

Grundlagen der analytischen Mechanik

Seminar: Theorie der komplexen Systeme

Marcus Tassler

Teil I: Lagrange Mechanik

Generalisierte Koordinaten und Zwangsbedingungen

- Generalisierte Koordinaten und Zwangsbedingungen
- Das d'Alembertsche Prinzip

- Generalisierte Koordinaten und Zwangsbedingungen
- Das d'Alembertsche Prinzip
- Die Lagrange- Gleichung 2. Art

- Generalisierte Koordinaten und Zwangsbedingungen
- Das d'Alembertsche Prinzip
- Die Lagrange- Gleichung 2. Art
- Das Hamiltonsche Prinzip und die Lagrange-Gleichungen

- Generalisierte Koordinaten und Zwangsbedingungen
- Das d'Alembertsche Prinzip
- Die Lagrange- Gleichung 2. Art
- Das Hamiltonsche Prinzip und die Lagrange-Gleichungen
- Zyklische Variablen

Definitionen:

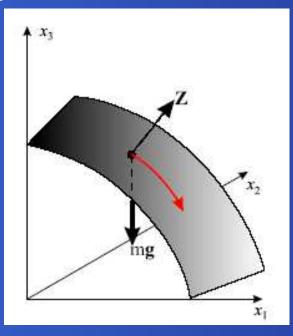
Zwangsbedingungen sind geometrische Bindungen die die freie Bewegung eines Massepunktes einschränken.

Definitionen:

- Zwangsbedingungen sind geometrische Bindungen die die freie Bewegung eines Massepunktes einschränken.
- Zwangskräfte sind Kräfte die Zwangsbedingungen realisieren, d.h. Kräfte die die freie Bewegung eines Massenpunktes einschränken.

Beispiel

Bewegung eines Massenpunkts auf einer gekrümmten Oberfläche im Schwerefeld



- Zwangsbedingung: Oberflächengleichung $f(x_1, x_2, x_3) = 0$
- Zwangskraft: Z kompensiert F_{\perp} und Zentrifugalkraft

Holonome Zwangsbedingungen: Zwangsbedingungen der Form

$$f_{\mu}(x_1, x_2, \dots, x_N, t) = 0, \ \mu = 1, 2, \dots, p$$

- Holonome Zwangsbedingungen: Zwangsbedingungen der Form $f_{\mu}(x_1, x_2, \dots, x_N, t) = 0, \ \mu = 1, 2, \dots, p$
- Holonom-skleronome Zwangsbedingung: Zwangsbedingungen der Form $\frac{\partial f_{\mu}}{\partial t} = 0, \ \mu = 1, 2, \dots, p \ (z.B.: starrer Körper)$

- Holonome Zwangsbedingungen: Zwangsbedingungen der Form $f_{\mu}(x_1, x_2, \dots, x_N, t) = 0, \ \mu = 1, 2, \dots, p$
- Holonom-skleronome Zwangsbedingung: Zwangsbedingungen der Form $\frac{\partial f_{\mu}}{\partial t} = 0, \ \mu = 1, 2, \dots, p \ (z.B.: starrer Körper)$
- Holonom-rheonome Zwangsbedingungen: Zwangsbedingungen der Form $\frac{\partial f_{\mu}}{\partial t} \neq 0$

Westfälische Wilhelms-Universität Münster

- Holonome Zwangsbedingungen: Zwangsbedingungen der Form $f_{\mu}(x_1, x_2, \dots, x_N, t) = 0, \ \mu = 1, 2, \dots, p$
- Holonom-skleronome Zwangsbedingung: Zwangsbedingungen der Form $\frac{\partial f_{\mu}}{\partial t} = 0, \ \mu = 1, 2, \dots, p \text{ (z.B.: starrer Körper)}$
- **Holonom-rheonome Zwangsbedingungen:** Zwangsbedingungen der Form $\frac{\partial f_{\mu}}{\partial t} \neq 0$
- Im folgenden: konservativ-holonome Systeme

Eine holonome Zwangsbedingung erlaubt die Eliminierung einer Koordinate x_i und reduziert somit die Anzahl der Freiheitsgrade eines Systems um 1.

- Eine holonome Zwangsbedingung erlaubt die Eliminierung einer Koordinate x_i und reduziert somit die Anzahl der Freiheitsgrade eines Systems um 1.
- Der Zustand eines N- Teilchensystems läßt sich somit bei p holonomen Zwangsbedingungen über 3N-p freie Koordinaten beschreiben.

Die Koordinaten q_1, \ldots, q_s werden als **generalisierte Koordinaten** bezeichnet wenn folgende Bedingungen erfüllt sind:

- Der Zustand des betrachteten physikalischen Systems wird eindeutig über die Koordinaten q_1, \ldots, q_s festgelegt.
- \blacksquare Die Koordinaten q_1, \ldots, q_s sind unabhängig.

Die Koordinaten q_1, \ldots, q_s werden als **generalisierte Koordinaten** bezeichnet wenn folgende Bedingungen erfüllt sind:

- Der Zustand des betrachteten physikalischen Systems wird eindeutig über die Koordinaten q_1, \ldots, q_s festgelegt.
- \blacksquare Die Koordinaten q_1, \ldots, q_s sind unabhängig.

Die Größen $\dot{q}_1, \dots, \dot{q}_s$ werden als **generalisierte Geschwindigkeiten** bezeichnet.

Die Koordinaten q_1, \ldots, q_s werden als **generalisierte Koordinaten** bezeichnet wenn folgende Bedingungen erfüllt sind:

- Der Zustand des betrachteten physikalischen Systems wird eindeutig über die Koordinaten q_1, \ldots, q_s festgelegt.
- \blacksquare Die Koordinaten q_1, \ldots, q_s sind unabhängig.

Der von den q_i aufgespannte Raum heißt Konfigurationsraum.

Definitionen:

- Virtuelle Verrückung $\delta \vec{r_i}$:
 Infinitesimale Koordinatenänderung bei konstant gehaltener Zeit ($\delta t = 0$) unter Berücksichtigung der Zwangsbedingungen.
- Virtuelle Arbeit: $\delta W_i = \vec{F}_i \cdot \delta \vec{r}_i$

Newtonsche Bewegungsgleichung für Teilchen i:

$$\vec{F_i} = \vec{K_i} + \vec{Z_i} = m_i \ddot{\vec{r_i}}$$

Newtonsche Bewegungsgleichung für Teilchen i:

Teilchen i:
$$\vec{F_i} = \vec{K_i} + \vec{Z_i} = m_i \ddot{\vec{r_i}}$$

Treibende Kraft

Newtonsche Bewegungsgleichung für

Teilchen i:
$$\vec{F_i} = \vec{K_i} + \vec{Z_i} = m_i \vec{r_i}$$
Zwangskraft

Newtonsche Bewegungsgleichung für Teilchen i:

$$\vec{F_i} = \vec{K_i} + \vec{Z_i} = m_i \ddot{\vec{r_i}}$$

Somit gilt:
$$\sum_{i} (\vec{K}_i - m\vec{r}_i) \cdot \delta \vec{r}_i + \sum_{i} \vec{Z}_i \cdot \delta \vec{r}_i = 0$$

Newtonsche Bewegungsgleichung für Teilchen i:

$$\vec{F_i} = \vec{K_i} + \vec{Z_i} = m_i \ddot{\vec{r_i}}$$

- Somit gilt: $\sum_i (\vec{K}_i m\ddot{\vec{r}_i}) \cdot \delta \vec{r_i} + \sum_i \vec{Z}_i \cdot \delta \vec{r_i} = 0$
- $\sum_{i} \vec{Z_i} \cdot \delta \vec{r_i} = 0$ (Prinzip der virtuellen Arbeit)

Newtonsche Bewegungsgleichung für Teilchen i:

$$\vec{F}_i = \vec{K}_i + \vec{Z}_i = m_i \ddot{\vec{r}}_i$$

- Somit gilt: $\sum_i (\vec{K}_i m\ddot{\vec{r}_i}) \cdot \delta \vec{r_i} + \sum_i \vec{Z}_i \cdot \delta \vec{r_i} = 0$
- $\sum_{i} \vec{Z_i} \cdot \delta \vec{r_i} = 0$ (Prinzip der virtuellen Arbeit)

d'Alembertsches Prinzip:

$$\sum_{i} (\vec{K}_{i} - m\vec{r}_{i}) \cdot \delta \vec{r}_{i} = 0$$

d'Alembertsches Prinzip in generalisierten Koordinaten:

$$\sum_{j=1}^{S} \left(\left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} \right] - Q_j \right) \delta q_j = 0$$

d'Alembertsches Prinzip in generalisierten Koordinaten:

$$\sum_{j=1}^{S} \left(\left[\frac{d}{dt} \left(\frac{\partial T}{\partial g_j} \right) - \frac{\partial T}{\partial q_j} \right] - Q_j \right) \delta q_j = 0$$

T: kinetische Energie

d'Alembertsches Prinzip in generalisierten Koordinaten:

$$\sum_{j=1}^{S} \left(\left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right] - Q_{j} \right) \delta q_{j} = 0$$

Generalisierte Kraftkomponenten:

$$Q_j = \sum_{i=1}^{N'} \vec{K}_i \cdot \frac{\partial \vec{r_i}}{\partial q_j}$$

d'Alembertsches Prinzip in generalisierten Koordinaten:

$$\sum_{j=1}^{S} \left(\left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} \right] - Q_j \right) \delta q_j = 0$$

Generalisierte Kraftkomponenten:

$$Q_j = \sum_{i=1}^{N} \vec{K_i} \cdot \frac{\partial \vec{r_i}}{\partial q_i}$$

Konservative Systeme:

$$\vec{K}_i = -\nabla_i V \Rightarrow Q_j = -\frac{\partial V}{\partial q_j}$$

d'Alembertsches Prinzip

in generalisierten Koordinaten:

$$\sum_{j=1}^{S} \left(\left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} \right] - Q_j \right) \delta q_j = 0$$

Generalisierte Kraftkomponenten:

$$Q_j = \sum_{i=1}^{N} \vec{K_i} \cdot \frac{\partial \vec{r_i}}{\partial q_i}$$

Konservative Systeme:

$$\vec{K}_i = -\nabla_i V \Rightarrow Q_j = -\frac{\partial V}{\partial q_j}$$

Definition: Lagrange-Funktion

$$L(q_1..q_s, \dot{q}_1..\dot{q}_s, t) = T(q_1..q_s, \dot{q}_1..\dot{q}_s, t) - V(q_1..q_s)$$

d'Alembertsches Prinzip in generalisierten Koordinaten:

$$\sum_{j=1}^{S} \left(\left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} \right] - Q_j \right) \delta q_j = 0$$

Konservative Systeme:

$$\sum_{j=1}^{S} \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_j} - \frac{\partial L}{\partial q_j} \right) \delta q_j = 0$$

d'Alembertsches Prinzip in generalisierten Koordinaten:

$$\sum_{j=1}^{S} \left(\left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} \right] - Q_j \right) \delta q_j = 0$$

Konservative Systeme:

$$\sum_{j=1}^{S} \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_j} - \frac{\partial L}{\partial q_j} \right) \delta q_j = 0$$

unabhängig bei holonomen ZB

d'Alembertsches Prinzip

in generalisierten Koordinaten:

$$\sum_{j=1}^{S} \left(\left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} \right] - Q_j \right) \delta q_j = 0$$

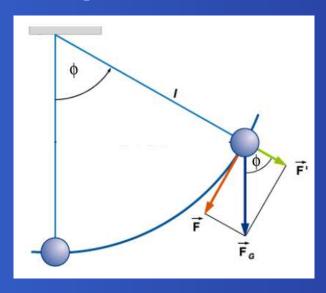
Konservative Systeme:

$$\sum_{j=1}^{S} \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_j} - \frac{\partial L}{\partial q_j} \right) \delta q_j = 0$$

Konservative Systeme mit holonomen ZB:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0$$
 (Lagrange- Gleichungen 2. Art)

Beispiel: Pendel



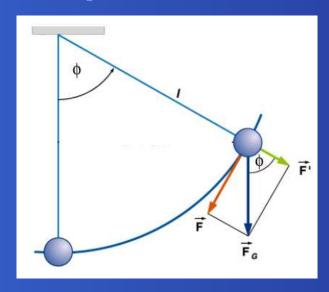
$$V(\phi) = mgl(1 - \cos\phi)$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$L = ml\left(\frac{1}{2}l\dot{\phi}^2 - g(1-\cos\phi)\right)$$

Beispiel: Pendel



$$V(\phi) = mgl(1 - \cos \phi)$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

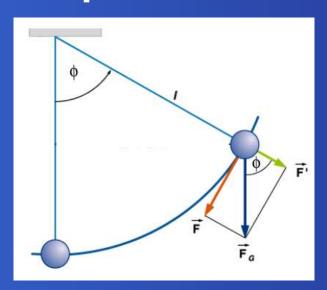
$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$L = ml\left(\frac{1}{2}l\dot{\phi}^2 - g(1-\cos\phi)\right)$$

Lagrange Gleichung 2.Art für ϕ : $\frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} - \frac{\partial L}{\partial \phi} = 0$

Lagrange Gleichung

Beispiel: Pendel



$$V(\phi) = mgl(1 - \cos \phi)$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

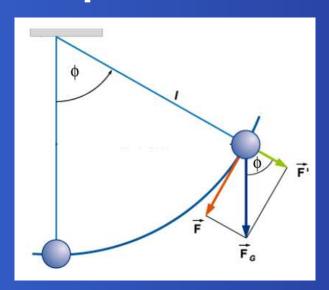
$$L = ml\left(\frac{1}{2}l\dot{\phi}^2 - g(1-\cos\phi)\right)$$

Lagrange Gleichung 2.Art für ϕ : $\frac{d}{dt}\frac{\partial L}{\partial \dot{\phi}} - \frac{\partial L}{\partial \phi} = 0$

$$\Rightarrow ml\left(l\ddot{\phi} + g\sin\phi\right) = 0$$
, kleine ϕ : $\ddot{\phi} = -\frac{g}{l}\phi$

Lagrange Gleichung

Beispiel: Pendel



$$V(\phi) = mgl(1 - \cos \phi)$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$L = ml\left(\frac{1}{2}l\dot{\phi}^2 - g(1-\cos\phi)\right)$$

Lagrange Gleichung 2.Art für ϕ : $\frac{d}{dt} \frac{\partial L}{\partial \dot{\phi}} - \frac{\partial L}{\partial \phi} = 0$

$$\Rightarrow \phi = a \cos \sqrt{\frac{g}{l}}t + b \sin \sqrt{\frac{g}{l}}t$$

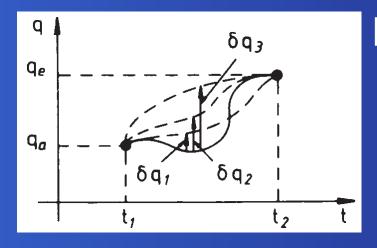
Hamiltonsches Prinzip für konservative Systeme

Hamiltonsches Prinzip für konservative Systeme Definition Wirkungsfunktional:

$$S(\vec{q}(t)) = \int_{t_1}^{t_2} L(\vec{q}(t), \vec{\dot{q}}(t), t) dt$$

Hamiltonsches Prinzip für konservative Systeme Definition Wirkungsfunktional:

$$S(\vec{q}(t)) = \int_{t_1}^{t_2} L(\vec{q}(t), \vec{\dot{q}}(t), t) dt$$



Konkurrenzschar M mit

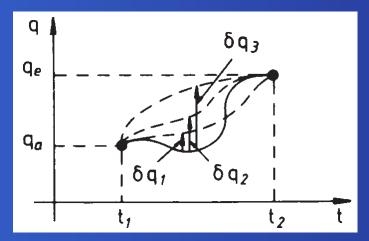
1)
$$\vec{q}(t): \vec{q}(t_1) = \vec{q_a}; \vec{q}(t_2) = \vec{q_e}$$

2)
$$\vec{q}(t) = \vec{q_r}(t) + \delta \vec{q}(t)$$

3)
$$\delta \vec{q}(t_1) = \delta \vec{q}(t_2) = 0$$

Hamiltonsches Prinzip für konservative Systeme Definition Wirkungsfunktional:

$$S(\vec{q}(t)) = \int_{t_1}^{t_2} L(\vec{q}(t), \vec{\dot{q}}(t), t) dt$$



Konkurrenzschar M mit

1)
$$\vec{q}(t) : \vec{q}(t_1) = \vec{q}_a; \vec{q}(t_2) = \vec{q}_e$$

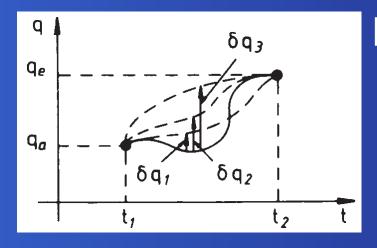
2)
$$\vec{q}(t) = \vec{q_r}(t) + \delta \vec{q}(t)$$

3)
$$\delta \vec{q}(t_1) = \delta \vec{q}(t_2) = 0$$

tatsächliche Bahn

Hamiltonsches Prinzip für konservative Systeme Definition Wirkungsfunktional:

$$S(\vec{q}(t)) = \int_{t_1}^{t_2} L(\vec{q}(t), \vec{\dot{q}}(t), t) dt$$



Konkurrenzschar M mit

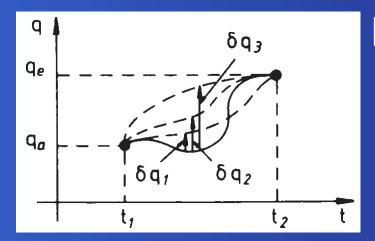
1)
$$\vec{q}(t): \vec{q}(t_1) = \vec{q_a}; \vec{q}(t_2) = \vec{q_e}$$

2)
$$\vec{q}(t) = \vec{q_r}(t) + \delta \vec{q}(t)$$

3)
$$\delta \vec{q}(t_1) = \delta \vec{q}(t_2) = 0$$

Hamiltonsches Prinzip für konservative Systeme Definition Wirkungsfunktional:

$$S(\vec{q}(t)) = \int_{t_1}^{t_2} L(\vec{q}(t), \vec{\dot{q}}(t), t) dt$$



Konkurrenzschar M mit

1)
$$\vec{q}(t): \vec{q}(t_1) = \vec{q_a}; \vec{q}(t_2) = \vec{q_e}$$

2)
$$\vec{q}(t) = \vec{q_r}(t) + \delta \vec{q}(t)$$

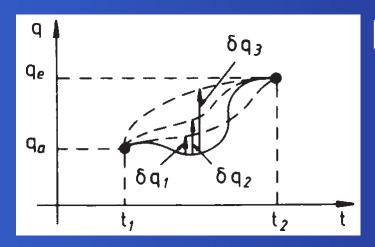
3)
$$\delta \vec{q}(t_1) = \delta \vec{q}(t_2) = 0$$

Hamiltonsches Prinzip: $\delta S(\vec{q_r}(t)) \stackrel{!}{=} 0$

$$\delta S(\vec{q_r}(t)) \stackrel{!}{=} 0$$

Hamiltonsches Prinzip für konservative Systeme Definition Wirkungsfunktional:

$$S(\vec{q}(t)) = \int_{t_1}^{t_2} L(\vec{q}(t), \vec{\dot{q}}(t), t) dt$$



Konkurrenzschar M mit

1)
$$\vec{q}(t): \vec{q}(t_1) = \vec{q_a}; \vec{q}(t_2) = \vec{q_e}$$

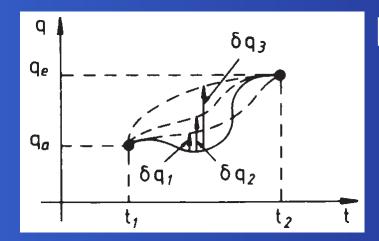
2)
$$\vec{q}(t) = \vec{q_r}(t) + \delta \vec{q}(t)$$

3)
$$\delta \vec{q}(t_1) = \delta \vec{q}(t_2) = 0$$

Hamiltonsches Prinzip: $\delta S(\vec{q_r}(t)) \stackrel{!}{=} 0$ Variation

Hamiltonsches Prinzip für konservative Systeme Definition Wirkungsfunktional:

$$S(\vec{q}(t)) = \int_{t_1}^{t_2} L(\vec{q}(t), \vec{\dot{q}}(t), t) dt$$



Konkurrenzschar M mit

1)
$$\vec{q}(t): \vec{q}(t_1) = \vec{q_a}; \vec{q}(t_2) = \vec{q_e}$$

2)
$$\vec{q}(t) = \vec{q_r}(t) + \delta \vec{q}(t)$$

3)
$$\delta \vec{q}(t_1) = \delta \vec{q}(t_2) = 0$$

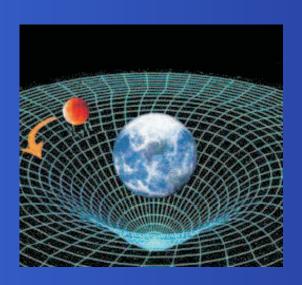
Hamiltonsches Prinzip: $\delta S(\vec{q_r}(t)) \stackrel{!}{=} 0$

$$\delta S(\vec{q_r}(t)) \stackrel{!}{=} 0$$

Tafelrechnung: Herleitung der Lagrange- Gleichungen

Das **Hamiltonsche Prinzip** in anderen Bereichen der Physik

Das **Hamiltonsche Prinzip** in anderen Bereichen der Physik



Allgemeine Relativitätstheorie

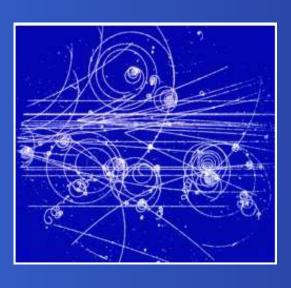
$$\delta \int d^4x \sqrt{-g} \left(\frac{1}{\kappa} R + \mathcal{L}_{mat} + \Lambda \right) \stackrel{!}{=} 0$$

(Hamiltonsches Prinzip der ART)

$$R^{\alpha\beta} + \left(\Lambda - \frac{R}{2}\right)g^{\alpha\beta} = -\kappa T^{\alpha\beta}$$

(Einsteinsche Feldgleichungen)

Das **Hamiltonsche Prinzip** in anderen Bereichen der Physik



Quantenfeldtheorie

$$\delta S = \delta \int d^4x \mathcal{L}(\phi_r, \phi_{r,\mu}) \stackrel{!}{=} 0$$

(Prinzip der kleinsten Wirkung)

$$\frac{\partial \mathcal{L}}{\partial \phi_r} - \frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial \phi_{r,\mu}} = 0, \quad r = 1, 2, \dots$$

(Euler- Lagrange- Gleichungen)

Das **Hamiltonsche Prinzip** in anderen Bereichen der Physik

Quantenfeldtheorie

$$\delta S = \delta \int d^4x \mathcal{L}(\phi_r, \phi_{r,\mu}) \stackrel{!}{=} 0$$

(Prinzip der kleinsten Wirkung)

$$\frac{\partial \mathcal{L}}{\partial \phi_r} - \frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial \phi_{r,\mu}} = 0, \quad r = 1, 2, \dots$$

(Euler- Lagrange- Gleichungen)

$$\pi_r(x) = \frac{\partial \mathcal{L}}{\partial \dot{\phi_r}(x)}, \quad \mathcal{H}(x) = \pi_r(x)\dot{\phi_r}(x) - \mathcal{L}(\phi_r, \phi_{r,\mu})$$

(Impuls- Feld und Hamiltondichte)

Das **Hamiltonsche Prinzip** in anderen Bereichen der Physik



Quantenfeldtheorie

$$\delta S = \delta \int d^4x \mathcal{L}(\phi_r, \phi_{r,\mu}) \stackrel{!}{=} 0$$

(Prinzip der kleinsten Wirkung)

$$\frac{\partial \mathcal{L}}{\partial \phi_r} - \frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial \phi_{r,\mu}} = 0, \quad r = 1, 2, \dots$$

(Euler- Lagrange- Gleichungen)

$$\mathcal{L} = \frac{1}{2}(\phi_{\mu}\phi^{\mu} - m^2\phi^2) \Rightarrow (\partial_{\mu}\partial^{\mu} + m^2)\phi = 0$$

(Reelles Klein-Gordon-Feld)

Das **Hamiltonsche Prinzip** in anderen Bereichen der Physik



Quantenfeldtheorie

$$\delta S = \delta \int d^4x \mathcal{L}(\phi_r, \phi_{r,\mu}) \stackrel{!}{=} 0$$

(Prinzip der kleinsten Wirkung)

$$\frac{\partial \mathcal{L}}{\partial \phi_r} - \frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial \phi_{r,\mu}} = 0, \quad r = 1, 2, \dots$$

(Euler- Lagrange- Gleichungen)

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{1}{2}(\partial_{\nu}A_{\mu})(\partial^{\nu}A^{\mu}) - e\bar{\psi}\gamma^{\mu}A_{\mu}\psi \Rightarrow$$
$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = e\gamma^{\mu}A_{\mu}\psi, \quad \Box A^{\mu} = e\bar{\psi}\gamma^{\mu}\psi$$

(Quantenelektrodynamik)

Definition: Zyklische Variable

Variable q_i mit $\frac{\partial L}{\partial q_i} = 0$

Definition: Zyklische Variable

Variable
$$q_i$$
 mit $\frac{\partial L}{\partial q_i} = 0$

Jede zyklische Variable führt auf einen Erhaltungssatz:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \Rightarrow p_i = \frac{\partial L}{\partial \dot{q}_i} = const$$

Lagrange Gleichung 2. Art

Definition: Zyklische Variable

Variable
$$q_i$$
 mit $\frac{\partial L}{\partial q_i} = 0$

Jede zyklische Variable führt auf einen Erhaltungssatz:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \Rightarrow p_i = \frac{\partial L}{\partial \dot{q}_i} = const$$

 Generalisierte Koordinaten sollten daher so gewählt daß möglichst viele zyklisch sind.

Symmetrien und Erhaltungssätze (Noethersche Theoreme)

Symmetrien und Erhaltungssätze (Noethersche Theoreme)

Homogenität der Zeit

$$\frac{\partial L}{\partial t} = 0 \Leftrightarrow H = \sum_{i=1}^{s} p_i \dot{q}_i - L = const$$

Symmetrien und Erhaltungssätze (Noethersche Theoreme)

Homogenität der Zeit

$$\frac{\partial L}{\partial t} = 0 \Leftrightarrow H = \sum_{i=1}^{s} p_i \dot{q}_i - L = const$$

Hamilton- Funktion

Symmetrien und Erhaltungssätze (Noethersche Theoreme)

Homogenität der Zeit

$$\frac{\partial L}{\partial t} = 0 \Leftrightarrow H = \sum_{i=1}^{s} p_i \dot{q}_i - L = const$$

Homogenität des Raums

$$\vec{P} = \sum_{i=1}^{N} M_i \dot{\vec{r_i}} = const$$
 (Impulserhaltung)

Symmetrien und Erhaltungssätze (Noethersche Theoreme)

Homogenität der Zeit

$$\frac{\partial L}{\partial t} = 0 \Leftrightarrow H = \sum_{i=1}^{s} p_i \dot{q}_i - L = const$$

Homogenität des Raums

$$\vec{P} = \sum_{i=1}^{N} M_i \dot{\vec{r_i}} = const$$
 (Impulserhaltung)

Isotropie des Raums

$$\vec{L} = \sum_{i=1}^{N} m_i \vec{r_i} \times \dot{\vec{r_i}} = const$$
 (Drehimpulserh.)

Teil II: Hamilton und Hamilton-Jacobi Mechanik

Hamilton Mechanik

Legendre Transformation, Hamiltonfunktion

- Legendre Transformation, Hamiltonfunktion
- Kanonische Bewegungsgleichungen

- Legendre Transformation, Hamiltonfunktion
- Kanonische Bewegungsgleichungen
- Poisson- Klammer

- Legendre Transformation, Hamiltonfunktion
- Kanonische Bewegungsgleichungen
- Poisson- Klammer
- Kanonische Phasentransformationen

Hamilton Mechanik

- Legendre Transformation, Hamiltonfunktion
- Kanonische Bewegungsgleichungen
- Poisson- Klammer
- Kanonische Phasentransformationen

Hamilton-Jacobi Mechanik

Hamilton Mechanik

- Legendre Transformation, Hamiltonfunktion
- Kanonische Bewegungsgleichungen
- Poisson- Klammer
- Kanonische Phasentransformationen

Hamilton-Jacobi Mechanik

Hamilton-Jacobi Gleichung

Hamilton Mechanik

- Legendre Transformation, Hamiltonfunktion
- Kanonische Bewegungsgleichungen
- Poisson- Klammer
- Kanonische Phasentransformationen

Hamilton-Jacobi Mechanik

- Hamilton-Jacobi Gleichung
- Separation der Variablen

Legendre Transformation

Gegeben: f(x, y) mit

$$df = udx + vdy, \ u = \left(\frac{\partial f}{\partial x}\right), \ v = \left(\frac{\partial f}{\partial y}\right)$$

Legendre Transformation

Gegeben: f(x, y) mit

$$df = udx + vdy, \quad u = \left(\frac{\partial f}{\partial x}\right), \quad v = \left(\frac{\partial f}{\partial y}\right)$$

Gesucht:
$$g(x,v)$$
 mit $dg=udx-ydv, \ y=\left(\frac{\partial g}{\partial v}\right)$

Legendre Transformation

Gegeben: f(x, y) mit

$$df = udx + vdy, \quad u = \left(\frac{\partial f}{\partial x}\right), \quad v = \left(\frac{\partial f}{\partial y}\right)$$

Gesucht: g(x,v) mit $dg=udx-ydv, \ y=\left(\frac{\partial g}{\partial v}\right)$

Lösung: df = udx + vdy = udx + d(vy) - ydv

Legendre Transformation

Gegeben: f(x,y) mit

$$df = udx + vdy, \quad u = \left(\frac{\partial f}{\partial x}\right), \quad v = \left(\frac{\partial f}{\partial y}\right)$$

Gesucht: g(x,v) mit $dg=udx-ydv, \ y=\left(\frac{\partial g}{\partial v}\right)$

Lösung:
$$df = udx + vdy = udx + d(vy) - ydv$$

 $\Rightarrow d(f - vy) = udx - ydv$

Legendre Transformation

Gegeben: f(x,y) mit

$$df = udx + vdy, \quad u = \left(\frac{\partial f}{\partial x}\right), \quad v = \left(\frac{\partial f}{\partial y}\right)$$

Gesucht: g(x,v) mit $dg=udx-ydv, \ y=\left(\frac{\partial g}{\partial v}\right)$

Lösung:
$$df = udx + vdy = udx + d(vy) - ydv$$

 $\Rightarrow d(f - vy) = udx - ydv$

$$g(x, v)$$
 mit $dg = udx - ydv$

Legendre Transformation

Gegeben: f(x, y) mit

$$df = udx + vdy, \quad u = \left(\frac{\partial f}{\partial x}\right), \quad v = \left(\frac{\partial f}{\partial y}\right)$$

Gesucht:
$$g(x,v)$$
 mit $dg=udx-ydv, \ y=\left(\frac{\partial g}{\partial v}\right)$

Lösung:
$$df = udx + vdy = udx + d(vy) - ydv$$

 $\Rightarrow d(f - vy) = udx - ydv$

Legendre- Transformierte von f bezüglich y:

$$g(x,v) = f(x,y) - vy, \quad v = \left(\frac{\partial f}{\partial y}\right)$$

Gegeben:
$$L(q_1,..,q_s,\dot{q}_1,..,\dot{q}_s,t)$$
 mit
$$dL = \frac{\partial L}{\partial q_1}dq_1 + ... + \frac{\partial L}{\partial q_s}dq_s + p_1d\dot{q}_1 + ... + p_sd\dot{q}_s + \frac{\partial L}{\partial t}dt$$

Gegeben:
$$L(q_1,..,q_s,\dot{q_1},..,\dot{q_s},t)$$
 mit $dL=\frac{\partial L}{\partial q_1}dq_1+..+\frac{\partial L}{\partial q_s}dq_s+p_1d\dot{q_1}+..+p_sd\dot{q_s}+\frac{\partial L}{\partial t}dt$ $p_i=\frac{\partial L}{\partial \dot{q_i}}$ (verallgemeinerte Impulse)

Gegeben: $L(q_1, ..., q_s, \dot{q}_1, ..., \dot{q}_s, t)$ mit

$$dL = \frac{\partial L}{\partial q_1} dq_1 + ... + \frac{\partial L}{\partial q_s} dq_s + p_1 d\dot{q}_1 + ... + p_s d\dot{q}_s + \frac{\partial L}{\partial t} dt$$

Gesucht: Phasenraumfkt. $H(q_1,..,q_s,p_1,..,p_s,t)$

Gegeben: $L(q_1, ..., q_s, \dot{q}_1, ..., \dot{q}_s, t)$ mit

$$dL = \frac{\partial L}{\partial q_1} dq_1 + ... + \frac{\partial L}{\partial q_s} dq_s + p_1 d\dot{q}_1 + ... + p_s d\dot{q}_s + \frac{\partial L}{\partial t} dt$$

Gesucht: Phasenraumfkt. $H(q_1,..,q_s,p_1,..,p_s,t)$

Legendre Transformierte von L bezüglich \dot{q}_1 :

$$T_1(q_1, ..., q_s, p_1, \dot{q}_2, ..., \dot{q}_s, t) = L - \dot{q}_1 p_1$$

Gegeben: $L(q_1,..,q_s,\dot{q_1},..,\dot{q_s},t)$ mit

$$dL = \frac{\partial L}{\partial q_1} dq_1 + ... + \frac{\partial L}{\partial q_s} dq_s + p_1 d\dot{q}_1 + ... + p_s d\dot{q}_s + \frac{\partial L}{\partial t} dt$$

Gesucht: Phasenraumfkt. $H(q_1,..,q_s,p_1,..,p_s,t)$

Legendre Transformierte von L bezüglich \dot{q}_1 :

$$T_1(q_1, ..., q_s, p_1, \dot{q}_2, ..., \dot{q}_s, t) = L - \dot{q}_1 p_1$$

Legendre Transformierte von L bzgl. $\dot{q}_1,..,\dot{q}_s$:

$$T_{1,...,s}(q_1,...,q_s,p_1,...,p_s,t) = L - \sum_{i=1}^{s} \dot{q}_i p_i$$

Gegeben: $L(q_1,..,q_s,\dot{q_1},..,\dot{q_s},t)$ mit

$$dL = \frac{\partial L}{\partial q_1} dq_1 + ... + \frac{\partial L}{\partial q_s} dq_s + p_1 d\dot{q}_1 + ... + p_s d\dot{q}_s + \frac{\partial L}{\partial t} dt$$

Gesucht: Phasenraumfkt. $H(q_1,..,q_s,p_1,..,p_s,t)$

Legendre Transformierte von L bezüglich \dot{q}_1 :

$$T_1(q_1, ..., q_s, p_1, \dot{q}_2, ..., \dot{q}_s, t) = L - \dot{q}_1 p_1$$

Legendre Transformierte von L bzgl. $\dot{q}_1,...,\dot{q}_s$:

$$T_{1,...,s}(q_1,...,q_s,p_1,...,p_s,t) = L - \sum_{i=1}^{s} \dot{q}_i p_i$$

Definition Hamilton-Funktion:

$$H(q_1, ..., q_s, p_1, ..., p_s, t) = -T_{1,...,s} = \sum_{i=1}^{s} \dot{q}_i p_i - L$$

Gegeben: $L(q_1, ..., q_s, \dot{q}_1, ..., \dot{q}_s, t)$ mit

$$dL = \frac{\partial L}{\partial q_1} dq_1 + ... + \frac{\partial L}{\partial q_s} dq_s + p_1 d\dot{q}_1 + ... + p_s d\dot{q}_s + \frac{\partial L}{\partial t} dt$$

Gesucht: Phasenraumfkt. $H(q_1,..,q_s,p_1,..,p_s,t)$

Legendre Transformierte von L bezüglich \dot{q}_1 :

$$T_1(q_1, ..., q_s, p_1, \dot{q}_2, ..., \dot{q}_s, t) = L - \dot{q}_1 p_1$$

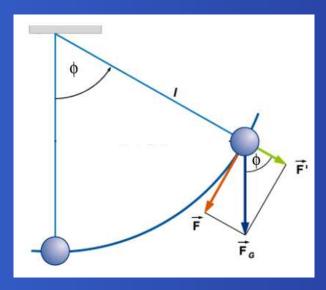
Legendre Transformierte von L bzgl. $\dot{q}_1,...,\dot{q}_s$:

$$T_{1,...,s}(q_1,...,q_s,p_1,...,p_s,t) = L - \sum_{i=1}^{s} \dot{q}_i p_i$$

Definition Hamilton-Funktion:

$$H(q_1, ..., q_s, p_1, ..., p_s, t) = -T_{1,...,s} = \sum_{i=1}^{s} \dot{q}_i p_i - L$$

Tafelrechnung: Kanonische Bewegungsgleichungen

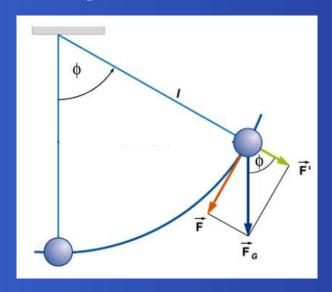


$$V(\phi) = mgl(1 - \cos\phi)$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$L = ml\left(\frac{1}{2}l\dot{\phi}^2 - g(1-\cos\phi)\right)$$



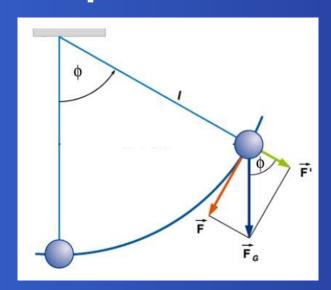
$$V(\phi) = mgl(1 - \cos \phi)$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$L = ml\left(\frac{1}{2}l\dot{\phi}^2 - g(1-\cos\phi)\right)$$

Verallgemeinerter Impuls: $p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = m l^2 \dot{\phi}$



$$V(\phi) = mgl(1 - \cos \phi)$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

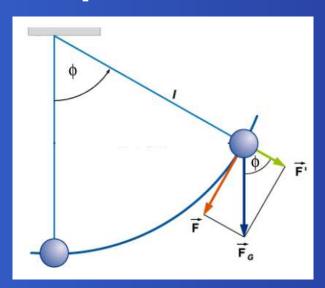
$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$L = ml\left(\frac{1}{2}l\dot{\phi}^2 - g(1-\cos\phi)\right)$$

Verallgemeinerter Impuls: $p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = m l^2 \dot{\phi}$

$$H = T + V = \frac{p_{\phi}^2}{2ml^2} + mlg(1 - \cos\phi)$$

Beispiel: Pendel



$$V(\phi) = mgl(1 - \cos \phi)$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

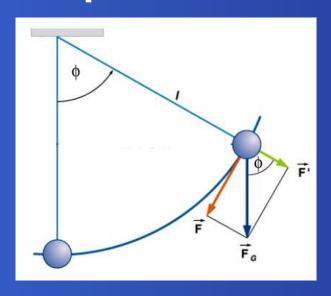
$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$L = ml\left(\frac{1}{2}l\dot{\phi}^2 - g(1-\cos\phi)\right)$$

Verallgemeinerter Impuls: $p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = m l^2 \dot{\phi}$

$$H = T + V = \frac{p_{\phi}^2}{2ml^2} + mlg(1 - \cos\phi)$$

(gültig für konservativ-holonome Systeme)



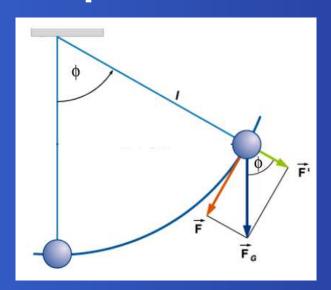
$$V(\phi) = mgl(1 - \cos \phi)$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$L = ml\left(\frac{1}{2}l\dot{\phi}^2 - g(1-\cos\phi)\right)$$

$$\dot{\phi} = \frac{\partial H}{\partial p_{\phi}} = \frac{1}{ml^2} p_{\phi}, \quad \dot{p_{\phi}} = -\frac{\partial H}{\partial \phi} = -mlg \sin \phi$$



$$V(\phi) = mgl(1 - \cos \phi)$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$T(\dot{\phi}) = \frac{1}{2}ml^2\dot{\phi}^2$$

$$L = ml\left(\frac{1}{2}l\dot{\phi}^2 - g(1-\cos\phi)\right)$$

$$\dot{\phi} = \frac{\partial H}{\partial p_{\phi}} = \frac{1}{ml^2} p_{\phi}, \quad \dot{p_{\phi}} = -\frac{\partial H}{\partial \phi} = -mlg \sin \phi$$

kleine
$$\phi$$
: $ml^2\ddot{\phi}=\dot{p_\phi}=-mlg\phi\Rightarrow\left|\ddot{\phi}=-\frac{g}{l}\phi\right|$

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

Eigenschaften

 Poissonklammern erlauben die prägnante Formulierung klassicher Gesetze

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

Eigenschaften

- Poissonklammern erlauben die prägnante Formulierung klassicher Gesetze
- Die Quantenmechanik erhält ihren Bezug zur klassischen Mechanik über die Korrespondenz von Kommutator und Poisson Klammer im Heisenberg- Bild

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

Fundamentale Poisson Klammer

$$\{q_i, q_j\}_{\vec{q}, \vec{p}} = 0, \ \{p_i, p_j\}_{\vec{q}, \vec{p}} = 0, \ \{q_i, p_j\}_{\vec{q}, \vec{p}} = \delta_{ij}$$

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

Fundamentale Poisson Klammer

$$\{q_i, q_j\}_{\vec{q}, \vec{p}} = 0, \ \{p_i, p_j\}_{\vec{q}, \vec{p}} = 0, \ \{q_i, p_j\}_{\vec{q}, \vec{p}} = \delta_{ij}$$

Kriterium für die Kanonizität von Koordinatentransformationen

Poisson Klammer

Definition: Poisson Klammer

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

Fundamentale Poisson Klammer

$$\{q_i, q_j\}_{\vec{q}, \vec{p}} = 0, \ \{p_i, p_j\}_{\vec{q}, \vec{p}} = 0, \ \{q_i, p_j\}_{\vec{q}, \vec{p}} = \delta_{ij}$$

- Kriterium für die Kanonizität von Koordinatentransformationen
- **QM:** $[\hat{q}_i, \hat{q}_j]_- = [\hat{p}_i, \hat{p}_j]_- = 0, \ [\hat{q}_i, \hat{p}_j]_- = i\hbar \delta_{ij}$

Westfälische Wilhelms-Universität Münster

Phasentransformationen

Phasentransformation: $(\vec{q}, \vec{p}) \rightarrow (\vec{\bar{q}}, \vec{\bar{p}})$

Phasentransformation: $(\vec{q}, \vec{p}) \rightarrow (\vec{\bar{q}}, \vec{\bar{p}})$

Kanonische Phasentransformationen

$$\exists ar{H}(ar{ar{q}},ar{ar{p}},t) \; \mathsf{mit} \; \dot{ar{q}_i} = rac{\partial ar{H}}{\partial ar{p}_i}, \dot{ar{p}_i} = -rac{\partial ar{H}}{\partial ar{q}_i} \; orall i$$

Phasentransformation: $(\vec{q}, \vec{p}) \rightarrow (\vec{\bar{q}}, \vec{\bar{p}})$

Kanonische Phasentransformationen

- $\exists ar{H}(ar{q},ar{p},t) \; \mathsf{mit} \; \dot{ar{q}_i} = rac{\partial ar{H}}{\partial ar{p_i}}, \dot{ar{p_i}} = -rac{\partial ar{H}}{\partial ar{q_i}} \; orall i$
- Kriterium für Kanonizität: Fundamentale Poisson- Klammer

 F_2 -Transformationen

Erzeugende Funktion: $F_2 = F_2(\vec{q}, \vec{p}, t)$

F_2 -Transformationen

Erzeugende Funktion: $F_2 = F_2(\vec{q}, \vec{p}, t)$

Bei kanonischer Transformation gilt:

$$\sum_{i=1}^{s} p_i \dot{q}_i - H = -\sum_{i=1}^{s} \bar{q}_i \dot{\bar{p}}_i - \bar{H} + \frac{dF_2}{dt}$$

F_2 -Transformationen

Erzeugende Funktion: $F_2 = F_2(\vec{q}, \vec{p}, t)$

Bei kanonischer Transformation gilt:

$$\sum_{i=1}^{s} p_i \dot{q}_i - H = -\sum_{i=1}^{s} \bar{q}_i \dot{\bar{p}}_i - \bar{H} + \frac{dF_2}{dt}$$

Hieraus folgt über Differentialbildung:

$$p_i = \frac{\partial F_2}{\partial q_i}, \quad \bar{q}_i = \frac{\partial F_2}{\partial \bar{p}_i}, \quad \bar{H} = H + \frac{\partial F_2}{\partial t}$$

F_2 -Transformationen

Erzeugende Funktion: $F_2 = \overline{F_2(\vec{q}, \vec{p}, t)}$

Bei kanonischer Transformation gilt:

$$\sum_{i=1}^{s} p_i \dot{q}_i - H = -\sum_{i=1}^{s} \bar{q}_i \dot{\bar{p}}_i - \bar{H} + \frac{dF_2}{dt}$$

Hieraus folgt über Differentialbildung:

$$p_i = \frac{\partial F_2}{\partial q_i}, \quad \bar{q}_i = \frac{\partial F_2}{\partial \bar{p}_i}, \quad \bar{H} = H + \frac{\partial F_2}{\partial t}$$

Über Einsetzen in das Hamiltonsche Prinzip und Variation nach (\vec{q}, \vec{p}) folgen die **Hamiltonschen** Bewegungsgleichungen.

Äquivalente Erzeugende

	$ar{q}$	$ar{p}$
q	$F_1(\vec{q}, \vec{ar{q}}, t):$ $p_i = \frac{\partial F_1}{\partial q_i}, \ \ ar{p_i} = -\frac{\partial F_1}{\partial ar{q_i}}$	$F_1(\vec{q},\vec{\bar{p}},t):$ $p_i = \frac{\partial F_2}{\partial q_i}, \ \ ar{q}_i = \frac{\partial F_2}{\partial ar{p}_i}$
p	$F_3(\vec{p}, \vec{\bar{q}}, t):$ $q_i = -\frac{\partial F_3}{\partial p_i}, \ \ \bar{p}_i = -\frac{\partial F_3}{\partial \bar{q}_i}$	$F_4(\vec{p}, \vec{\bar{p}}, t):$ $q_i = -\frac{\partial F_4}{\partial p_i}, \ \ \bar{q}_i = \frac{\partial F_4}{\partial \bar{p}_i}$

Westfälische Wilhelms-Universität Münster

Hamilton- Jacobi Dgl.

Gesucht: Transformation S mit \bar{q}_i =const, \bar{p}_i =const $\forall i$

Gesucht: Transformation S mit \bar{q}_i =const, \bar{p}_i =const $\forall i$

Lösung: S mit $\bar{H} = H + \frac{\partial S}{\partial t} = 0$

Gesucht: Transformation S mit

$$\bar{q}_i = \text{const}, \ \bar{p}_i = \text{const} \ \forall i$$

Lösung: S mit $\bar{H} = H + \frac{\partial S}{\partial t} = 0$

Beweis:
$$\dot{q}_i=\frac{\partial \bar{H}}{\partial \bar{p}_i}=0$$
, $\dot{p}_i=-\frac{\partial \bar{H}}{\partial \bar{q}_i}=0$

Gesucht: Transformation S mit $\bar{q}_i = \text{const}, \ \bar{p}_i = \text{const} \ \forall i$

Lösung:
$$S$$
 mit $\bar{H} = H + \frac{\partial S}{\partial t} = 0$

Beweis:
$$\dot{q}_i=\frac{\partial \bar{H}}{\partial \bar{p}_i}=0$$
, $\dot{p}_i=-\frac{\partial \bar{H}}{\partial \bar{q}_i}=0$

S sei
$$F_2$$
- Transformation $\Rightarrow p_i = \frac{\partial S}{\partial q_i}$

Gesucht: Transformation S mit

$$\bar{q}_i = \text{const}, \ \bar{p}_i = \text{const} \ \forall i$$

Lösung:
$$S$$
 mit $\bar{H} = H + \frac{\partial S}{\partial t} = 0$

Beweis:
$$\dot{q}_i=\frac{\partial \bar{H}}{\partial \bar{p}_i}=0$$
, $\dot{p}_i=-\frac{\partial \bar{H}}{\partial \bar{q}_i}=0$

S sei F_2 - Transformation $\Rightarrow p_i = \frac{\partial S}{\partial q_i}$

Hamilton-Jacobi Differentialgleichung

$$H(q_1, \dots, q_s, \frac{\partial S}{\partial q_1}, \dots, \frac{\partial S}{\partial q_s}, t) + \frac{\partial S}{\partial t} = 0$$

Physikalische Bedeutung der Transformation

Physikalische Bedeutung der Transformation

Es gilt:
$$\frac{d}{dt}S(\vec{q},\vec{\bar{p}},t) = \sum_{i=1}^{s} \left(\frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial \bar{p}_i} \dot{\bar{p}}_i \right) + \frac{\partial S}{\partial t}$$

Physikalische Bedeutung der Transformation

Es gilt:
$$\frac{d}{dt}S(\vec{q},\vec{\bar{p}},t) = \sum_{i=1}^{s} \left(\frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial \bar{p}_i} \dot{\bar{p}}_i \right) + \frac{\partial S}{\partial t}$$

Außerdem:
$$\frac{\partial S}{\partial a_i} = p_i, \ \dot{\bar{p_i}} = 0, \ \frac{\partial S}{\partial t} = \bar{H} - H = -H$$

Physikalische Bedeutung der Transformation

Es gilt:
$$\frac{d}{dt}S(\vec{q},\vec{p},t) = \sum_{i=1}^{s} \left(\frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial \bar{p}_i} \dot{p}_i \right) + \frac{\partial S}{\partial t}$$

Außerdem:
$$\frac{\partial S}{\partial q_i} = p_i, \ \dot{\bar{p_i}} = 0, \ \frac{\partial S}{\partial t} = \bar{H} - H = -H$$

(da F_2 - Transformation)

Physikalische Bedeutung der Transformation

Es gilt:
$$\frac{d}{dt}S(\vec{q},\vec{\bar{p}},t) = \sum_{i=1}^{s} \left(\frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial \bar{p}_i} \dot{\bar{p}}_i \right) + \frac{\partial S}{\partial t}$$

Außerdem:
$$\frac{\partial S}{\partial q_i} = p_i, \ \dot{\bar{p_i}} = 0, \ \frac{\partial S}{\partial t} = \bar{H} - H = -H$$

(nach Voraussetzung:
$$\bar{H} = H + \frac{\partial S}{\partial t} = 0$$
)

Physikalische Bedeutung der Transformation

Es gilt:
$$\frac{d}{dt}S(\vec{q},\vec{\bar{p}},t) = \sum_{i=1}^{s} \left(\frac{\partial S}{\partial q_i}\dot{q}_i + \frac{\partial S}{\partial \bar{p}_i}\dot{\bar{p}}_i\right) + \frac{\partial S}{\partial t}$$

Außerdem:
$$\frac{\partial S}{\partial q_i} = p_i, \ \dot{p_i} = 0, \ \frac{\partial S}{\partial t} = \bar{H} - H = -H$$

Somit folgt:
$$\frac{dS}{dt} = \sum_{i=1}^{s} p_i q_i - H = L$$

 $\Rightarrow S = \int L dt + const$

Physikalische Bedeutung der Transformation

Es gilt:
$$\frac{d}{dt}S(\vec{q},\vec{\bar{p}},t) = \sum_{i=1}^{s} \left(\frac{\partial S}{\partial q_i}\dot{q}_i + \frac{\partial S}{\partial \bar{p}_i}\dot{\bar{p}}_i\right) + \frac{\partial S}{\partial t}$$

Außerdem:
$$\frac{\partial S}{\partial q_i} = p_i$$
, $\dot{\bar{p_i}} = 0$, $\frac{\partial S}{\partial t} = \bar{H} - H = -H$

Somit folgt:
$$\frac{dS}{dt} = \sum_{i=1}^{s} p_i q_i - H = L$$

 $\Rightarrow S = \int L dt + const$

Die **Erzeugende S** in der Hamilton- Jacobi Mechanik entspricht der **Wirkung S** im Hamiltonschen Prinzip.

Betrachtung der HJD für
$$\frac{\partial H}{\partial t} = 0$$

Betrachtung der HJD für $\frac{\partial H}{\partial t} = 0$

Definition: Hamiltonsche charakteristische Funktion W

$$S(\vec{q}, \vec{\bar{p}}, t) = W(\vec{q}, \vec{\bar{p}}) - Et$$

Betrachtung der HJD für $\frac{\partial H}{\partial t} = 0$

Definition: Hamiltonsche charakteristische Funktion W

$$S(\vec{q}, \vec{p}, t) = W(\vec{q}, \vec{p}) - Et$$

$$(H = const = E)$$

Betrachtung der HJD für $\frac{\partial H}{\partial t} = 0$

Definition: Hamiltonsche charakteristische Funktion W

$$S(\vec{q}, \vec{\bar{p}}, t) = W(\vec{q}, \vec{\bar{p}}) - Et$$

W ist Erzeugende der Transformation:

$$p_i = \frac{\partial W}{\partial q_i}, \quad \bar{q}_i = \frac{\partial W}{\partial \bar{p}_i}, \quad \bar{H} = H$$

Betrachtung der HJD für $\frac{\partial H}{\partial t} = 0$

Definition: Hamiltonsche charakteristische Funktion W

$$S(\vec{q}, \vec{\bar{p}}, t) = W(\vec{q}, \vec{\bar{p}}) - Et$$

Wist Erzeugende der Transformation:

$$p_i = \frac{\partial W}{\partial q_i}, \quad \bar{q}_i = \frac{\partial W}{\partial \bar{p}_i}, \quad \bar{H} = H$$

W sei so gewählt daß $\bar{p}_i = \alpha_i = const$ für alle i

Betrachtung der HJD für $\frac{\partial H}{\partial t} = 0$

Definition: Hamiltonsche charakteristische Funktion W

$$S(\vec{q}, \vec{\bar{p}}, t) = W(\vec{q}, \vec{\bar{p}}) - Et$$

Wist Erzeugende der Transformation:

$$p_i = \frac{\partial W}{\partial q_i}, \ \bar{q}_i = \frac{\partial W}{\partial \bar{p}_i}, \ \bar{H} = H$$

W sei so gewählt daß $\bar{p_i} = \alpha_i = const$ für alle i $(\bar{q_i} \text{ zyklisch} \Rightarrow \bar{p_i} = const)$,

Betrachtung der HJD für $\frac{\partial H}{\partial t} = 0$

Definition: Hamiltonsche charakteristische Funktion W

$$S(\vec{q}, \vec{\bar{p}}, t) = W(\vec{q}, \vec{\bar{p}}) - Et$$

Wist Erzeugende der Transformation:

$$p_i = \frac{\partial W}{\partial q_i}, \ \bar{q}_i = \frac{\partial W}{\partial \bar{p}_i}, \ \bar{H} = H$$

W sei so gewählt daß $\bar{p}_i = \alpha_i = const$ für alle i

Hamilton- Jacobi Differentialgleichung

$$H(q_1,...,q_s,\frac{\partial W}{\partial q_1},..,\frac{\partial W}{\partial q_s}) = E(\alpha_1,..,\alpha_s)$$

 q_1 erscheine in H nur in der Form $f(q_1, \frac{\partial W}{\partial q_1})$

 q_1 erscheine in H nur in der Form $f(q_1, \frac{\partial W}{\partial q_1})$

Ansatz: $W(\vec{q}, \vec{\bar{p}}) = \bar{W}(q_2, \dots, q_s, \vec{\bar{p}}) + W_1(q_1, \vec{\bar{p}})$

 q_1 erscheine in H nur in der Form $f(q_1, \frac{\partial W}{\partial q_1})$

Ansatz: $W(\vec{q}, \vec{\bar{p}}) = \bar{W}(q_2, \dots, q_s, \vec{\bar{p}}) + W_1(q_1, \vec{\bar{p}})$

HJD: $H(q_2,\ldots,q_s,\frac{\partial \bar{W}}{\partial q_2},\ldots,\frac{\partial \bar{W}}{\partial q_s},f(q_1,\frac{\partial W_1}{\partial q_1}))=E$

 q_1 erscheine in H nur in der Form $f(q_1, \frac{\partial W}{\partial q_1})$

Ansatz:
$$W(\vec{q}, \vec{\bar{p}}) = \bar{W}(q_2, \dots, q_s, \vec{\bar{p}}) + W_1(q_1, \vec{\bar{p}})$$

HJD:
$$H(q_2, \ldots, q_s, \frac{\partial \overline{W}}{\partial q_2}, \ldots, \frac{\partial \overline{W}}{\partial q_s}, f(q_1, \frac{\partial W_1}{\partial q_1})) = E$$

$$H = const \Rightarrow \frac{\partial H}{\partial q_1} = 0 \Rightarrow f(q_1, \frac{dW_1}{dq_1}) = c_1 = const$$

 q_1 erscheine in H nur in der Form $f(q_1, \frac{\partial W}{\partial q_1})$

Ansatz:
$$W(\vec{q}, \vec{\bar{p}}) = \bar{W}(q_2, ..., q_s, \vec{\bar{p}}) + W_1(q_1, \vec{\bar{p}})$$

HJD:
$$H(q_2, \ldots, q_s, \frac{\partial \overline{W}}{\partial q_2}, \ldots, \frac{\partial \overline{W}}{\partial q_s}, f(q_1, \frac{\partial W_1}{\partial q_1})) = E$$

$$H = const \Rightarrow \frac{\partial H}{\partial q_1} = 0 \Rightarrow \left| f(q_1, \frac{dW_1}{dq_1}) = c_1 = const \right|$$

HJD:
$$H(q_2, \ldots, q_s, \frac{\partial W}{\partial q_2}, \ldots, \frac{\partial W}{\partial q_s}, c_1) = E$$

 q_1 erscheine in H nur in der Form $f(q_1, \frac{\partial W}{\partial q_1})$

Ansatz:
$$W(\vec{q}, \vec{\bar{p}}) = \bar{W}(q_2, \dots, q_s, \vec{\bar{p}}) + W_1(q_1, \vec{\bar{p}})$$

HJD:
$$H(q_2, \ldots, q_s, \frac{\partial \overline{W}}{\partial q_2}, \ldots, \frac{\partial \overline{W}}{\partial q_s}, f(q_1, \frac{\partial W_1}{\partial q_1})) = E$$

$$H = const \Rightarrow \frac{\partial H}{\partial q_1} = 0 \Rightarrow \left| f(q_1, \frac{dW_1}{dq_1}) = c_1 = const \right|$$

HJD:
$$H(q_2, \ldots, q_s, \frac{\partial \overline{W}}{\partial q_2}, \ldots, \frac{\partial \overline{W}}{\partial q_s}, c_1) = E$$

Können sukzessive alle Variablen q_i abgetrennt werden, ist die HJD in den Koordinaten q_i separabel.

 q_1 erscheine in H nur in der Form $f(q_1, \frac{\partial W}{\partial q_1})$

Ansatz:
$$W(\vec{q}, \vec{\bar{p}}) = \bar{W}(q_2, \dots, q_s, \vec{\bar{p}}) + W_1(q_1, \vec{\bar{p}})$$

HJD:
$$H(q_2, \ldots, q_s, \frac{\partial \overline{W}}{\partial q_2}, \ldots, \frac{\partial \overline{W}}{\partial q_s}, f(q_1, \frac{\partial W_1}{\partial q_1})) = E$$

$$H = const \Rightarrow \frac{\partial H}{\partial q_1} = 0 \Rightarrow \left| f(q_1, \frac{dW_1}{dq_1}) = c_1 = const \right|$$

HJD:
$$H(q_2, \ldots, q_s, \frac{\partial \overline{W}}{\partial q_2}, \ldots, \frac{\partial \overline{W}}{\partial q_s}, c_1) = E$$

Können sukzessive alle Variablen q_i abgetrennt werden, ist die HJD in den Koordinaten q_i separabel.

Ansatz bei in den Koordinaten q_i separabler HJD

Ansatz bei in den Koordinaten q_i separabler HJD

Charakteristische Funktion:

$$W = \sum_{j=1}^{s} W_j(q_j, \alpha_1, \dots, \alpha_s)$$

Ansatz bei in den Koordinaten q_i separabler HJD

Charakteristische Funktion:

$$W = \sum_{j=1}^{s} W_j(q_j(\alpha_1, \dots \alpha_s))$$

 $\bar{p_j} = \alpha_j$ da W so gewählt daß alle q_j zyklisch

Ansatz bei in den Koordinaten q_i separabler HJD

Charakteristische Funktion:

$$W = \sum_{j=1}^{s} W_j(q_j, \alpha_1, \dots, \alpha_s)$$

Es ergeben sich s Differentialgleichungen der Form:

$$H_j(q_j, \frac{dW_j}{dq_j}, \alpha_1, \dots, \alpha_s) = \alpha_j$$

Ansatz bei in den Koordinaten q_i separabler HJD

Charakteristische Funktion:

$$W = \sum_{j=1}^{s} W_j(q_j, \alpha_1, \dots, \alpha_s)$$

Es ergeben sich s Differentialgleichungen der Form:

$$H_j(q_j, \frac{dW_j}{dq_j}, \alpha_1, \dots, \alpha_s) = \alpha_j$$

Die Gleichungen sind nach $\frac{dW_j}{dq_j}$ aufzulösen und zu integrieren

Hamilton-Jacobi Formalismus und Behandlung der Fokker-Planck Gleichung:

$$\frac{\partial}{\partial t}W = \left(-\frac{\partial}{\partial q^{\nu}}K^{\nu}(q) + \frac{\eta}{2}\frac{\partial^2}{\partial q^{\nu}\partial q^{\mu}}Q^{\nu\mu}\right)W$$

Hamilton-Jacobi Formalismus und Behandlung der Fokker-Planck Gleichung:

$$\frac{\partial}{\partial t}W = \left(-\frac{\partial}{\partial q^{\nu}}K^{\nu}(q) + \frac{\eta}{2}\frac{\partial^2}{\partial q^{\nu}\partial q^{\mu}}Q^{\nu\mu}\right)W$$

 $W(\vec{q},t)$: Wahrscheinlichkeitsdichte

Hamilton-Jacobi Formalismus und Behandlung der Fokker-Planck Gleichung:

$$\frac{\partial}{\partial t}W = \left(-\frac{\partial}{\partial q^{\nu}}K^{\nu}(q) + \frac{\eta}{2}\frac{\partial^2}{\partial q^{\nu}\partial q^{\mu}}Q^{\nu\mu}\right)W$$

Hamilton-Jacobi Formalismus und Behandlung der Fokker-Planck Gleichung:

$$\frac{\partial}{\partial t}W = \left(-\frac{\partial}{\partial q^{\nu}}K^{\nu}(q) + \frac{\eta}{2}\frac{\partial^2}{\partial q^{\nu}\partial q^{\mu}}Q^{\nu\mu}\right)W$$

Ansatz für statische Dichte W:

$$W(\vec{q}, \eta) = N(\eta)e^{-\phi(\vec{q}, \eta)/\eta}$$

Hamilton-Jacobi Formalismus und Behandlung der Fokker-Planck Gleichung:

$$\frac{\partial}{\partial t}W = \left(-\frac{\partial}{\partial q^{\nu}}K^{\nu}(q) + \frac{\eta}{2}\frac{\partial^2}{\partial q^{\nu}\partial q^{\mu}}Q^{\nu\mu}\right)W$$

Ansatz für statische Dichte W:

$$W(\vec{q}, \eta) = N(\eta)e^{-\phi(\vec{q}, \eta)/\eta}$$

Für
$$\eta \to 0$$
 mit $\phi(\vec{q}) = \lim_{\eta \to 0} \phi(\vec{q}, \eta)$ folgt:

$$K^{\nu}(q)\frac{\partial\phi(\vec{q})}{\partial q^{\nu}} + \frac{1}{2}Q^{\nu\mu}\frac{\partial\phi(\vec{q})}{\partial q^{\nu}}\frac{\partial\phi(\vec{q})}{\partial q^{\mu}} = 0$$

Hamilton-Jacobi Formalismus und Behandlung der Fokker-Planck Gleichung:

$$\frac{\partial}{\partial t}W = \left(-\frac{\partial}{\partial q^{\nu}}K^{\nu}(q) + \frac{\eta}{2}\frac{\partial^2}{\partial q^{\nu}\partial q^{\mu}}Q^{\nu\mu}\right)W$$

Ansatz für statische Dichte W:

$$W(\vec{q}, \eta) = N(\eta)e^{-\phi(\vec{q}, \eta)/\eta}$$

Für
$$\eta \to 0$$
 mit $\phi(\vec{q}) = \lim_{\eta \to 0} \phi(\vec{q}, \eta)$ folgt:

$$K^{\nu}(q)\frac{\partial\phi(\vec{q})}{\partial q^{\nu}} + \frac{1}{2}Q^{\nu\mu}\frac{\partial\phi(\vec{q})}{\partial q^{\nu}}\frac{\partial\phi(\vec{q})}{\partial q^{\mu}} = 0$$

Interpretation als HJD mit Wirkung $\phi(\tilde{\mathbf{q}})$:

$$H(\vec{q}, \vec{p}) = \frac{1}{2}Q^{\mu\nu}p_{\nu}p_{\mu} + K^{\nu}(q)p_{\nu} = 0$$

Zusammenfassung

Lagrange Mechanik Grundprinzipien:

d'Alembertsches Prinzip: $\sum_i (\vec{K_i} - m\vec{r_i}) \cdot \delta \vec{r_i} = 0$

Hamiltonsches Prinzip: $\delta \int_{t_1}^{t_2} L(\vec{q}, \vec{\dot{q}}, t) dt \stackrel{!}{=} 0$

Lagrange-Funktion: $L(\vec{q}, \dot{\vec{q}}, t) = T(\vec{q}, \dot{\vec{q}}, t) - V(\vec{q})$

Bewegungsgleichung:

Lagrange Gleichung 2. Art: $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0$

Lagrange Mechanik

Hamiltonsches Prinzip und Lagrangegleichungen besitzen außerhalb der Mechanik große Bedeutung insbesondere in den Feldtheorien.

Zusammenfassung

Hamiltonmechanik

Die Hamiltonmechanik stellt eine Formulierung der Lagrangemechanik im Phasenraum dar.

Hamilton-Funktion:

$$H(q_1,..,q_s,p_1,..,p_s,t) = \sum_{i=1}^s \dot{q}_i p_i - L$$
 (Legendretransformierte von L)

Bewegungsgleichungen:

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}, \quad -\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}, \quad i = 1, ..., s$$

Bedeutung: z.b. in statistischer Physik

Zusammenfassung

Hamilton-Jacobi Mechanik

Ziel: Bestimmung einer F_2 - Transformation S die auf eine triviale Lösung des mechanischen Problems mit \bar{q}_i =const, \bar{p}_i =const $(\forall i)$ führt.

Hamilton-Jacobi Differentialgleichung:

$$H(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\ldots,\frac{\partial S}{\partial q_s},t)+\frac{\partial S}{\partial t}=0$$
 (S: Wirkung)

Insbesondere geeignet zur Lösung mechanischer Probleme mit separablen Variablen.

Ergänzungen

Konservative Systeme mit Zwangsbedingungen in differenzieller Form

$$\sum_{m=1}^{j} a_{im} dq_m + b_{it} dt = 0 \ i = 1, \dots, p$$

Konservative Systeme mit Zwangsbedingungen in differenzieller Form

$$\sum_{m=1}^{j} a_{im} dq_m + b_{it} dt = 0 \ i = 1, \dots, p$$

Formulierung für virtuelle Verrückungen:

$$\sum_{m=1}^{j} a_{im} \delta q_m = 0, \ i = 1, \dots, p$$

Konservative Systeme mit Zwangsbedingungen in differenzieller Form

$$\sum_{m=1}^{j} a_{im} dq_m + b_{it} dt = 0 \ i = 1, \dots, p$$

Formulierung für virtuelle Verrückungen:

$$\sum_{m=1}^{j} a_{im} \delta q_m = 0, \ i = 1, \dots, p$$

Es folgt:
$$\sum_{i=1}^{p} \lambda_i \sum_{m=1}^{j} a_{im} \delta q_m = 0$$

Konservative Systeme mit Zwangsbedingungen in differenzieller Form

$$\sum_{m=1}^{j} a_{im} dq_m + b_{it} dt = 0 \ i = 1, \dots, p$$

Formulierung für virtuelle Verrückungen:

$$\sum_{m=1}^{j} a_{im} \delta q_m = 0, \ i = 1, \dots, p$$

Es folgt:
$$\sum_{i=1}^{p} (\lambda_i \sum_{m=1}^{j} a_{im} \delta q_m = 0)$$

Lagrangescher Multiplikator

Konservative Systeme mit

Zwangsbedingungen in differenzieller Form

$$\sum_{m=1}^{j} a_{im} dq_m + b_{it} dt = 0 \ i = 1, \dots, p$$

Formulierung für virtuelle Verrückungen:

$$\sum_{m=1}^{j} a_{im} \delta q_m = 0, \ i = 1, \dots, p$$

Es folgt:
$$\sum_{i=1}^{p} \lambda_i \sum_{m=1}^{j} a_{im} \delta q_m = 0$$

Gleichsetzen mit d'Alembertschem Prinzip:

$$\sum_{m=1}^{j} \left(\left[\frac{d}{dt} \frac{\partial T}{\partial q_m^i} - \frac{\partial T}{\partial q_m} \right] - Q_m - \sum_{i=1}^{p} \lambda_i a_{im} \right) \delta q_m = 0$$

Konservative Systeme mit Zwangsbedingungen in differenzieller Form

$$\sum_{m=1}^{j} a_{im} dq_m + b_{it} dt = 0 \ i = 1, \dots, p$$

Erweiterte Lagrange Gleichung:

$$\sum_{m=1}^{j} \left(\left[\frac{d}{dt} \left(\frac{\partial L}{\partial q_m^i} \right) - \frac{\partial L}{\partial q_m} \right] - \sum_{i=1}^{p} \lambda_i a_{im} \right) \delta q_m = 0$$

Konservative Systeme mit Zwangsbedingungen in differenzieller Form

$$\sum_{m=1}^{j} a_{im} dq_m + b_{it} dt = 0 \ i = 1, \dots, p$$

Erweiterte Lagrange Gleichung:

$$\sum_{m=1}^{j} \left(\left[\frac{d}{dt} \left(\frac{\partial L}{\partial q_m} \right) - \frac{\partial L}{\partial q_m} \right] - \sum_{i=1}^{p} \lambda_i a_{im} \right) \delta q_m = 0$$

Für die j-p unabhängigen q_m muß jeder Summand für sich bereits 0 sein.

Konservative Systeme mit Zwangsbedingungen in differenzieller Form

$$\sum_{m=1}^{j} a_{im} dq_m + b_{it} dt = 0 \ i = 1, \dots, p$$

Erweiterte Lagrange Gleichung:

$$\sum_{m=1}^{j} \left(\left[\frac{d}{dt} \left(\frac{\partial L}{\partial q_m} \right) - \frac{\partial L}{\partial q_m} \right] - \sum_{i=1}^{p} \lambda_i a_{im} \right) \delta q_m = 0$$

- Für die j-p unabhängigen q_m muß jeder Summand für sich bereits 0 sein.
- Für die p abhängigen q_m kann dies durch eine geeignete Wahl der λ_i erreicht werden

Konservative Systeme mit Zwangsbedingungen in differenzieller Form

$$\sum_{m=1}^{j} a_{im} dq_m + b_{it} dt = 0 \ i = 1, \dots, p$$

Erweiterte Lagrange Gleichung:

$$\sum_{m=1}^{j} \left(\left[\frac{d}{dt} \left(\frac{\partial L}{\partial q_m^i} \right) - \frac{\partial L}{\partial q_m} \right] - \sum_{i=1}^{p} \lambda_i a_{im} \right) \delta q_m = 0$$

Lagrange Gleichungen 1. Art

$$\frac{d}{dt} \left(\frac{\partial L}{\partial q_m} \right) - \frac{\partial L}{\partial q_m} = \sum_{i=1}^p \lambda_i a_{im}$$

(über geeignete Wahl der λ_i)

Aufstellen der Bewegungsgleichungen

Aufstellen der Bewegungsgleichungen

1) Festlegung der generalisierten Koordinaten \vec{q}

Aufstellen der Bewegungsgleichungen

- 1) Festlegung der generalisierten Koordinaten \vec{q}
- 2) Aufstellen der Transformationsgleichungen

$$q_i = q_i(\vec{r_1}, ..., \vec{r_N}, t), \quad \dot{q}_i = \dot{q}_i(\vec{r_1}, ..., \vec{r_N}, \dot{\vec{r_1}}, ..., \dot{\vec{r_N}}, t)$$

Aufstellen der Bewegungsgleichungen

- 1) Festlegung der generalisierten Koordinaten \vec{q}
- 2) Aufstellen der Transformationsgleichungen

$$q_i = q_i(\vec{r_1}, ..., \vec{r_N}, t), \quad \dot{q}_i = \dot{q}_i(\vec{r_1}, ..., \vec{r_N}, \dot{\vec{r_1}}, ..., \dot{\vec{r_N}}, t)$$

3) Aufstellen der Lagrange-Funktion

$$L(\vec{q}, \dot{\vec{q}}, t) = T(\vec{q}, \dot{\vec{q}}, t) - V(\vec{q}, t)$$

Aufstellen der Bewegungsgleichungen

- 1) Festlegung der generalisierten Koordinaten \vec{q}
- 2) Aufstellen der Transformationsgleichungen

$$q_i = q_i(\vec{r_1}, ..., \vec{r_N}, t), \quad \dot{q}_i = \dot{q}_i(\vec{r_1}, ..., \vec{r_N}, \dot{\vec{r_1}}, ..., \dot{\vec{r_N}}, t)$$

3) Aufstellen der Lagrange-Funktion

$$L(\vec{q}, \dot{\vec{q}}, t) = T(\vec{q}, \dot{\vec{q}}, t) - V(\vec{q}, t)$$

4) Lagrange-Mechanik: Aufstellen der Euler-Lagrange Gleichungen

Aufstellen der Bewegungsgleichungen

- 1) Festlegung der generalisierten Koordinaten \vec{q}
- 2) Aufstellen der Transformationsgleichungen

$$q_i = q_i(\vec{r_1}, ..., \vec{r_N}, t), \quad \dot{q}_i = \dot{q}_i(\vec{r_1}, ..., \vec{r_N}, \dot{\vec{r_1}}, ..., \dot{\vec{r_N}}, t)$$

3) Aufstellen der Lagrange-Funktion

$$L(\vec{q}, \dot{\vec{q}}, t) = T(\vec{q}, \dot{\vec{q}}, t) - V(\vec{q}, t)$$

4) Bestimmung von $\dot{\vec{q}}$ im Phasenraum:

$$p_i(\vec{q}, \dot{\vec{q}}, t) = \frac{\partial L}{\partial \dot{q}_i}, \quad i = 1, ..., s \Rightarrow \qquad \dot{\vec{q}} = \dot{\vec{q}}(\vec{q}, \vec{p}, t)$$

Aufstellen der Bewegungsgleichungen

Aufstellen der Bewegungsgleichungen

5) Bestimmung der Hamilton-Funktion:

$$H(\vec{q}, \vec{p}, t) = \sum_{i=1}^{s} p_i \dot{q}_i(\vec{q}, \vec{p}, t) - L(\vec{q}, \dot{\vec{q}}(\vec{q}, \vec{p}, t), t)$$

Aufstellen der Bewegungsgleichungen

5) Bestimmung der Hamilton-Funktion:

$$H(\vec{q}, \vec{p}, t) = \sum_{i=1}^{s} p_i \dot{q}_i(\vec{q}, \vec{p}, t) - L(\vec{q}, \dot{\vec{q}}(\vec{q}, \vec{p}, t), t)$$

6) Formulierung der Bewegungsgleichungen:

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \ \dot{p}_i = -\frac{\partial H}{\partial q_i}, \ -\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t} \ | \ i = 1,..,s$$

Aufstellen der Bewegungsgleichungen

5) Bestimmung der Hamilton-Funktion:

$$H(\vec{q}, \vec{p}, t) = \sum_{i=1}^{s} p_i \dot{q}_i(\vec{q}, \vec{p}, t) - L(\vec{q}, \dot{\vec{q}}(\vec{q}, \vec{p}, t), t)$$

6) Formulierung der Bewegungsgleichungen:

$$\begin{vmatrix} \dot{q}_i = \frac{\partial H}{\partial p_i}, & \dot{p}_i = -\frac{\partial H}{\partial q_i}, & -\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t} \end{vmatrix} i = 1,..,s$$

Anmerkung: Bei holonom-skleronomen ZB gilt

$$H(\vec{q}, \vec{p}, t) = T(\vec{q}, \dot{\vec{q}}, t) + V(\vec{q}).$$

Die Hamilton-Funktion kann dann direkt über über $\dot{\vec{q}} = \dot{\vec{q}}(\vec{q}, \vec{p}, t)$ formuliert werden.

Definition: Poisson Klammer

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

$$\frac{d}{dt}f(\vec{q},\vec{p},t) = \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \dot{q}_i + \frac{\partial f}{\partial p_i} \dot{p}_i \right) + \frac{\partial f}{\partial t}$$

Westfälische Wilhelms-Universität Münster

Poisson Klammer

Definition: Poisson Klammer

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

$$\frac{d}{dt}f(\vec{q}, \vec{p}, t) = \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \dot{q}_i + \frac{\partial f}{\partial p_i} \dot{p}_i \right) + \frac{\partial f}{\partial t}$$

$$= \sum_{j=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial H}{\partial p_i} + \frac{\partial f}{\partial p_i} \frac{\partial H}{\partial q_i} \right) + \frac{\partial f}{\partial t}$$

Westfälische Wilhelms-Universität Münster

Poisson Klammer

Definition: Poisson Klammer

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

$$\frac{d}{dt}f(\vec{q},\vec{p},t) = \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i}\dot{q}_i + \frac{\partial f}{\partial p_i}\dot{p}_i\right) + \frac{\partial f}{\partial t}$$

$$= \sum_{j=1}^{s} \left(\frac{\partial f}{\partial q_i}\frac{\partial H}{\partial p_i} + \frac{\partial f}{\partial p_i}\frac{\partial H}{\partial q_i}\right) + \frac{\partial f}{\partial t}$$

$$\Rightarrow \left| \frac{df}{dt} = \{f, H\}_{\vec{q}, \vec{p}} + \frac{\partial f}{\partial t} \right|$$

Definition: Poisson Klammer

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

$$\frac{d}{dt}f(\vec{q},\vec{p},t) = \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \dot{q}_i + \frac{\partial f}{\partial p_i} \dot{p}_i \right) + \frac{\partial f}{\partial t}$$

$$= \sum_{j=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial H}{\partial p_i} + \frac{\partial f}{\partial p_i} \frac{\partial H}{\partial q_i} \right) + \frac{\partial f}{\partial t}$$

$$\Rightarrow \left| \frac{df}{dt} = \{f, H\}_{\vec{q}, \vec{p}} + \frac{\partial f}{\partial t} \right|$$

QM:
$$\frac{d\hat{f_H}}{dt} = \frac{1}{i\hbar}[\hat{f_H},\hat{H}]_- + \frac{\partial\hat{f_H}}{\partial t}$$

Poisson Klammer

Definition: Poisson Klammer

$$\{f(\vec{q}, \vec{p}, t), g(\vec{q}, \vec{p}, t)\}_{\vec{q}, \vec{p}} \equiv \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}\right)$$

Zeitliche Änderung einer Observablen f

$$\frac{d}{dt}f(\vec{q}, \vec{p}, t) = \sum_{i=1}^{s} \left(\frac{\partial f}{\partial q_i}\dot{q}_i + \frac{\partial f}{\partial p_i}\dot{p}_i\right) + \frac{\partial f}{\partial t}$$

$$= \sum_{j=1}^{s} \left(\frac{\partial f}{\partial q_i}\frac{\partial H}{\partial p_i} + \frac{\partial f}{\partial p_i}\frac{\partial H}{\partial q_i}\right) + \frac{\partial f}{\partial t}$$

$$\Rightarrow \frac{df}{dt} = \{f, H\}_{\vec{q}, \vec{p}} + \frac{\partial f}{\partial t}$$

Integral der Bewegung: $\{f,H\}_{\vec{q},\vec{p}}=-\frac{\partial f}{\partial t}$