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Overview

Topics of this talk

m The talk will cover both analytical and numerical real-time techniques in
two parts: Schwinger-Keldysh formalism and semi-classical lattice
simulations.

m Analytical techniques are demonstrated by calculating the real-time
static potential which generalizes the QCD static potential to a thermal
setting. The physical signature of the ¢g-resonance is discussed.

m Real-time lattice simulations are used to estimate non-perturbative
corrections to the heavy quark diffusion constant and the static
potential.
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General Quantum Statistics

In the following a general quantum statistical system characterized by a set
{pi(x)},z € R4 of bosonic quantities ¢;(z) € R is considered. The con-
figuration space is the Hilbert space /7.

Expectation Values

The expectation value of an operator Q) : %, — ./, is defined via:

~

1 a
Q) = ETr cQ, Z=Tro.

No restrictions are made on the nature of the statistical operator & or the
operator Q which may be time dependent and non-local.

& won't necessarily commute with the Hamiltonian £ of the system and may
therefore be time dependent. Definition used: 6 = 6(t = 0).



Path Integral Representation
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The integral is build along a closed complex contour € : R — C, starting with
the state |p) and ending with state |¢) of ., (¢t = 0). The customary choice
is the Schwinger-Keldysch contour depicted above.



Special Case: Thermal Equilibrium
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Finite Temperature Path Integral

In thermal equilibrium the statistical operator 6 = %e’ﬁﬁ translates into a
euclidean branch 7 of the time contour. For time independent quantities the
real-time part ¢ is omitted leading to a purely euclidean theory.



Statistical Correlators

A location on ¥ is specified by a time ¢t € R and an additional index i € 1,2
corresponding to a location on the forward or backward part of the contour.
The correlator of two operators @, ¢ takes a matrix form:

Real-Time Correlators
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Physical Setting

Heavy lon Collision

In the following this formalism will be employed to investigate the dynamics of
the quark-gluon plasma.

Partition Function

In thermal equilibrium a purely gluonic system is characterized by the
partition function

Z = / [DAJe"®, 8= L / dsd*zF,, F*"
C+T 4 C+T

where S is the Yang-Mills action along the contour ¢ + 7.



Quantity of Interest

1021 (t, ’I‘) = G‘

Propagator for a gg-pair

In the following this formalism will be employed to investigate the propagation
of a gg-pair with constituent mass M <« T in a quark-gluon plasma.

Static Potential atT = 0

At T = 0 the propagation of a heavy ¢q pair is described by a Schrédinger

equation: A
i8t021(t,7‘) = <2M — ﬁ'r =+ V(t, 'r')) Cgl(t, 7').

The potential V (¢, r) is approximated by the potential of a static ¢gg-pair:
V(t,r) ~ —CF% —or.

ag: Coupling for single gluon exchange, o: String Tension

At finite temperature it is unclear how to define a potential from first principles.



Real Time Static Potential

A,
\

[0y — V(t,1)] Cor(t,r) =0

Static Potential (Laine,Philipsen,Romatschke,Tassler,JHEP 0703 (2007) 054)

A static potential is defined in the large time and static mass limit of the
Schrédinger equation:

V(r) = lim V(¢ r)

t—o0

The quarkonium correlator is subsequently calculated by solving the
Schrédinger equation for physical quark masses:

M

Recent uses (2008,2009): A. Dumitru, Y. Guo and M. Strickland, “The imaginary part of the static gluon propagator
in an anisotropic (viscous) QCD plasma,” arXiv:0903.4703 [hep-ph]; N. Brambilla, J. Ghiglieri, A. Vairo and

P. Petreczky, “Static quark-antiquark pairs at finite temperature,” Phys. Rev. D 78 (2008); A. Beraudo, J. P. Blaizot
and C. Ratti, “Real and imaginary-time QQ correlators in a thermal medium,” Nucl. Phys. A 806 (2008) ;

M. A. Escobedo and J. Soto, “Non-relativistic bound states at finite temperature (1): the hydrogen atom,”
arXiv:0804.069 ; Y. Burnier, M. Laine and M. Vepsalainen, “Heavy quarkonium in any channel in resummed hot
QCD,” JHEP 0801 (2008)

(i&t = v+ 2M]) Ca1 =0, BC: Co(t=0)~d(r)



Expansion of the Wilson Loop

L Ty =1+ Py, + +"“‘6 +.o..
Ye

Diagrams contributing to the Wilson-Loop

The Real-Time static potential to 0'(g?)

d3k ~
V(r) = ¢*Cp / W(l —cosk-7)GY(w=0,k).

Here GYY is the longitudinal component of the time ordered gluon propagator
which can be decomposed as:

G11 = Re Gr + 1
In the special case of thermal equilibrium the propagator is given by:

2
G%(w—0,F) = — o1 .
k2 +m2 Bk (k2 + m%)?
—_——

Re(G),Retarded

mp =~ ¢gT is the thermal gluon mass.



The static potential in thermal equilibrium

Plugging in the propagator the following result is obtained:

The static potential

g C’F[ " exp(meT)] _Z.QQTCF

Ve == 4 e r 27 i)
Re(V): Retarded contribution Im(V):
with ¢(e) = 2 [ i |1 - 2]
Features:

m The real part is the usual Debye screended potential
(Contribution of the retarded propagator)

m An imaginary part appears at finite T due to Landau damping
(Contribution of the symmetric propagator).



sof —————— Physical signatures

301 500 VeV << << Quarkonium signatures from the finite
I ] mass Schrédinger equation:

Spectral function[arXiv:O71 1.1743]

m The spectral function is depicted
for Bottomonium.

m The imaginary part induces a
finite width to the resonance
peak (melting of the resonance).

Potentig|l2Xiv:0704.1720]

m The Dilepton rate is shown for
Bottomonium.

m A softening of the resonance is
seen for increased temperature.
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Anisotropic Media

Momentum Distribution

Results have also been obtained for an anisotropic plasma characterized by
the momentum distribution:

f(0) = N(©)np(py/1+ £(0, - 7)?)
n g Thermal Bose Distribution, &: Anisotropy, 7i: Collision axis, N (¢) = /I + &: Normalization
Both limiting cases £ — oo and £ < 1 have been considered.

See also: A. Dumitru, Y. Guo and M. Strickland, “The imaginary part of the static gluon propagator in an anisotropic
(viscous) QCD plasma,” arXiv:0903.4703 [hep-ph]; Y. Burnier, M. Laine and M. Vepsalainen, “Quarkonium
dissociation in the presence of a small momentum space anisotropy,” arXiv:0903.3467 [hep-ph].



Putting it on the Lattice ?

Singlet Free Energy Ni=10
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Singlet part of the free energy in lattice gauge theory (Wilson action, No = 3, N, = 10)

Challenge

The Real-Time static potential is a dynamical quantity defined from a
Minkowski space Schrédinger equation.

m The real and imaginary parts mix upon analytic continuation. Binding
energy and decay width can not be seperated on the lattice.

m Fort = —if3 the singlet free energy is recovered. This quantity can not
be related to the ¢ — oo limit of the potential in Minkowski space.

Solution: Measure the correlator in (semi-)classical real-time simulations.



Classical Limit in Thermal Field Theory

Consider a general bosonic system characterized by a set of fields and
momenta {y;(z), 7:(x)}. The parition function is:

7 = Tre*ﬂl:l({qgivﬁ'i})

Thermal insertions in perturbation theory (bare symmetric propagators) are
proportional to the momentum distribution:

W
nEW = 2 hw 12T

Since the expansion parameter is 7ig? the classical limit 7 — 0 contains all
diagrams with 2m vertices and a maximal number of m thermal insertions at
soft momentaw; < T,j € {1,...,m}:

(T
g2m H <—) , m €N  (Classical Contributions).
j=1 “i
For theories where soft momentum scales can be separated from hard scales
these diagrams will dominate the low energy region w < T.



Classical Dynamics

The Heisenberg picture equations of motion for fields and momenta are:

d . i . d,. i
w¥ = E[HAO] and P h[H»ﬂ-

Using the bosonic commutation relations
[6,#] = ih
the commutators are identified as derivatives in the classical limit 7 — 0:
lim —[@", @] = —n# and lim ;[<,5,7r] =n
By writing the Hamiltonian A ({¢:(x), ¢:(x)}) as a power series the classical
Hamiltonian equations of motion are recovered:

d ., . 0 d. . H
P B T




Application to the Yang-Mills Plasma

Momentum Scales of the Yang-Mills Plasma:

m Hard Momentum Scale: k ~ T
The characteristic gluon momentum scale corresponds to the
temperature T. The length scale 1/7 is the average inter particle
spacing.

m Electric Scale: k ~ gT

The thermal mass of longitudinal gluons is mp ~ ¢T'. This translates
into a supression of electrical interactions at distances > 1/mp.

m Magnetic Scale: k ~ ¢*>T
Chromo-magnetism is dynamically screened over distances larger than
1/¢*T. Interactions become non-perturbative.
Problem: Soft and hard scales are not seperated. Hard loop contributions
dominate in soft gluon exchange. A systematic expansion in 7 is necessary.



Classical Limit on the Lattice

lllustration of a lattice configuration (Includes classical particles).

The simplest way to study the classical limit of thermal Yang-Mills theory on a
lattice is to isolate soft fields by restricting spatial momenta to a Brillouin zone
including only regions of momentum space with high occupation numbers:

ki < Ac, gT < A < T

Here the classical limit 7 — 0 can safely be taken. Observables must be
insensitive to physics at the hard scale.



Hamiltonian Lattice
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Spatial gauge fields are discretized on a lattice in the usual way. The (Minkowskian)
time is continuous. Red: Link U; (), Blue: Plaquette U;; ().

The Hamiltonian lattice:

m Discretization: R4*! — 7 x R'. To apply classical statistical
mechanics in a straightforward way a temporal gauge is chosen.

m Magnetic Fields: Spatial gauge fields are discretized as links
W,z +1) — Us(z)
where W is a straight Wilson line connecting the sites « and = + ¢.
m Electric Fields: Electric fields are defined via the relation:
Ai = B — U; = iE,U;



Partition Function

a A :
9 J/a
J

lllustration of Gauss’s law G(E,U) = q

The partition function of the classical lattice model is

Classical Partition Function

7= / DU / [DEJS(G)e "%, Hy(t) = S TrE:E: + Hu

where the magnetic part Ha, is identical to a d-dimensional Wilson action:
1
Hu =01 {1 - % ;ReTrUij(m,t)} :
x 1<J

Color electric fields can also be integrated out to arrive at the partition
function for a Yang-Mills theory coupled to an adjoint massless Higgs A§(x).



Equations of Motion

=TrT®

Ampere’s law on the lattice. Red: electric fields, Blue: spatial gauge fields.

The Euler-Lagrange equations are obtained from a variation of the lattice
action with respect to the entries of link variables under a unitarity constraint.

Euler-Lagrange Equations

Ui(z,t) = iEi(z,t)Ui(z,t) (Faraday’s law of induction)
Ef(z,t) = 2 Z ImTr{T"U;j(z,t)}  (Ampere’s circuital law)
5174

All ensemble configurations satisfy the Gauss constraint G = 0:
Z {Ei(x,t) —U_i(x,t)Ei(z — 1, t)UT,(x, t)} =0  (Gauss’s law).

The constraint remains satisfied during the time evolution for individual
ensemble configurations.



Matching to the Quantum Theory

The theory can be matched to quantum theory in the continuum by restricting
momenta to the Brillouin zone A.; in resummed perturbation theory. The
following hirarchy of length scales appears:

Hard Scale

Most energy resides at the cutoff scale ~ m/a where the thermal energy
distribution is cut off artificially.

Electric Scale \/a/¢*T

Beyond this length scale electrical interactions are screened due to the
longitudinal gluon mass mp, ..

Magnetic Scale ©/g*T
Magnetic interactions, which remain the most far reaching interactions
in the lattice model, are screened dynamically at this length scale.
The physics at soft scales is similar to the continuum while discretization
effects dominate the hard scale. Lattice hydrodynamics is badly affected by
the maximal deformation of momenta at the hard scale.



Lattice algorithm

)@ 1) Monte-Carlo I Draw {E¢(x)}
L. 0 | sun) + Higgs

from Gaussian)

Evolve Eleiztric «| 2) Projection Step
Fields for 5A¢ Enforce Gauss’s Law

Yes Y

3) Leap-Frog N
Evolve Fields for A 0

——

Link variables are generated by an overrelaxed heatbath for gauge
fields with an adjoint Higgs. This procedure essentially eliminates
thermalization times (up to 60% of simulation time in older algorithms).

Electrical fields are drawn from a Gaussian and projected on the
hypersurface proscribed by the gauge fixing.

A leapfrog is chosen as symplectic integrator for the Euler Lagrange
equations. The initial step is the only source of &'(a) errors.




Implementation Status

SU@) [ SU@)

Purely Classical
Standard action
Improved action
Hard Thermal Loop
Spherical Harmonics
Non-Equilibrium Vv Vv
Romatschke’s Discretization
Wong Equations

Particles v v/

: Implemented and checked in collaboration, /: Implemented, /: Testing

The number of spatial dimensions can be varied where applicable. Parallel
implementation via QDP++ available.



Application 1: Heavy-Quark Diffusion

The random walk of a heavy quark of mass M > T in a quark gluon plasma
is described by a Langevin equation:

Langevin equation

(Z:; = —npp: +&(t), (&€ () = rOi0(t —t)

m The momentum diffusion constant « and relaxation rate np are related
by a fluctution dissipation relation:

o K
= 5N

m The coefficient x = x(0) is obtained form the electric field correlator
2 e} .
w(w) = / At Tr (W (8, 0) Es(t, 2)W (£, 0) Ei (0, )

with a Wilson line W (¢, 0) connecting the chromo electric fields.



Lattice Measurement
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Fourier transform of «(t). Solid line: perturbation theory (37, = 24)

Obervable: E-Field Correlator

K(t) = %w(a () E:(t' + 1)

m The shape of the correlator agrees with perturbative predictions. The
peak structure at high w reflects the introduction of a Brillouin zone.

m The correlator is flat at w = 0. The diffusion constant can potentially be
measured in euclidean lattice simulationg®or-HuotLaineMoore:0901.1195



Lessons for Strong Coupling

Il
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Heavy quark diffusion constant x = «(w = 0). Solid line: perturbation theory

Leading order perturbative reSult(Mnore.Teaney,Phys.Rev.C7l (2004))
2 2
CrTm T
o~ 9 CrTmp (7 e )

67 mp

m Non-perturbative corrections in the classical theory are large at physical
temperatures.

m In the strong coupling regime ;' = a(¢?T/2N) — oo lattice artifacts
dominate and results depend on the discretization scheme.



Application 2: Real-Time Static Potential

= 16,N = 12, simulation
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Time evolution of the Wilson loop C11 (¢, r). Outer lines: Jacknife tolerance

Obervable: Wilson Loop

|

Cu(t,r) = NTT(W(t',r)W"‘(t’ +t,7))

The time evolution of a Wilson Loop of spatial extent » was measured. The
quarkonium potential is obtained via:

i8t011(t, T)

Vit,r)= )



Validity of the Classical Approximation

B =16,N =12, simulation

B =16,N =12, analytic

L T T T T
0
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1L ria=1
! -= rla=2
st L ria=3|_|
3 —rla=4
| 1 | 1 | | 1
0 3 6 9 12 0 3 6 9 12
t/a t/a
B3 N amp r=1a r=2a r=3a r=4a
Simulation™ 16.0 12 0.0 -0.060(2) -0.156(8) -0.246(26) -0.319(56)
(~ 200 Config.) 16.0 16 0.0 -0.059(2) -0.155(8) -0.245(22) -0.326(48)
16.0 12 0.211 -0.059(2) -0.147(7) -0.229(23) -0.297(51)
16.0 12 0.350 -0.030(2) -0.064(5) -0.096(12) -0.118(21)
13.5 12 0.250 -0.071(2) -0.174(10) -0.270(33) -0.341(97)
Analytic [ 160 [ oo [ 0.0 [ -0.0816 [ -0.1453 | -0.1847 [ -0.2072 |

(Overview of the asymptotic results for t — oo)

(Laine, Philipsen, Tassler, arXiv,0707 2458)



Summary

m Expansions:
The Schwinger-Keldysh formalism (expansion in g%) and
the classical approximation (expansion in ) were
highlighted.

m Quantities:
The static ¢g-potential in a thermal medium and
quarkonium resonance were discussed. Non-perturbative
corrections to the heavy quark diffusion constant due to
soft classical physics were estimated on the lattice.

m Challenge:
A quantitative understanding of nonperturbative effects
beyond leading order or kinetic theory is indispensible to
connect experiment and theory.



