

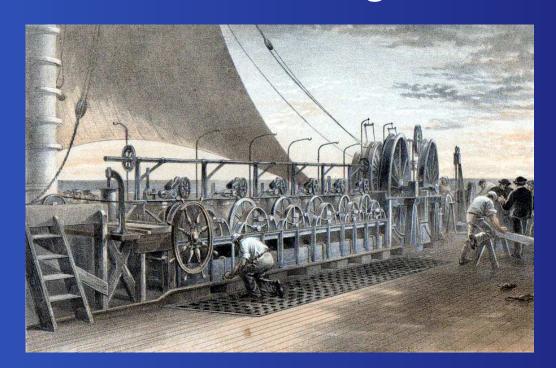
Glasfasern für große Entfernungen

Dispersions- Management und optische Verstärker

Marcus Tassler

Einleitung

Entwicklung der Kommunikation über große Entfernungen am Beispiel der Transatlantikverbindung



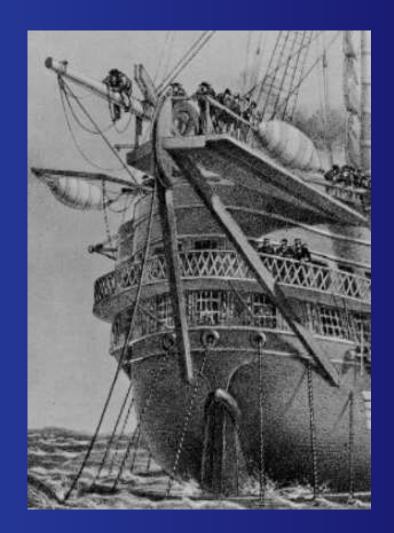
1.Transatlantikkabel:1858

Technische Daten:

- Kapazität: 10 Wörter/Std
- Kosten: 350 000 Pfund

Geschichte:

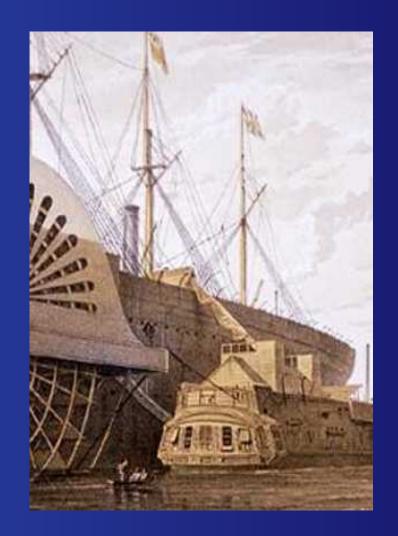
- 3 gescheiterte Versuche der Verlegung
- Ausfall nach 4 Wochen



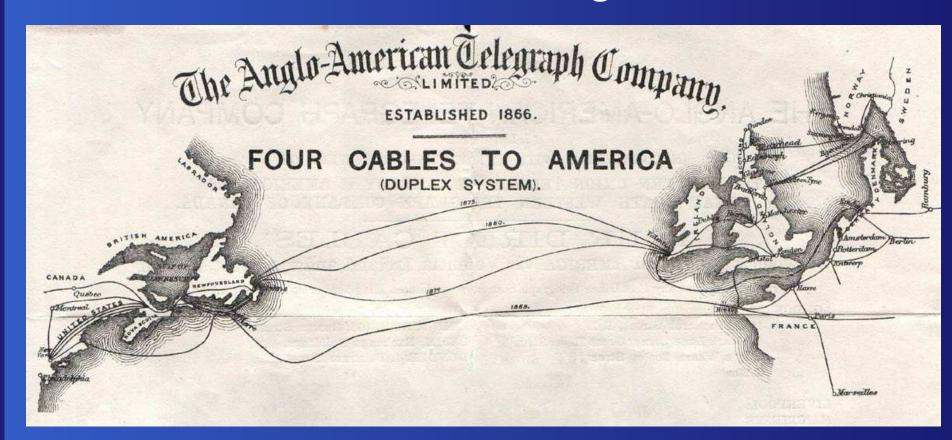
2.Transatlantikkabel:1866

Technische Daten:

- Kapazität: 45 Wörter/Min
- Kosten eines Telegramms: 20 Pfund
- (1. Versuch der Verlegung scheiterte)

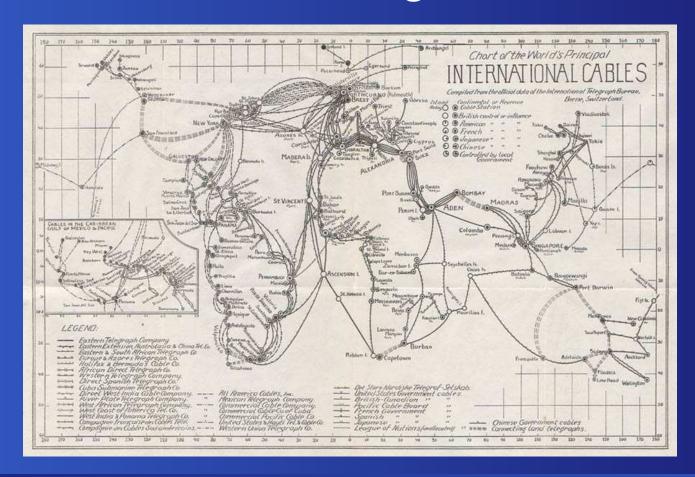


Transatlantikverbindungen 1880



Einleitung

Fernverbindungen 1924



Entwicklung der Übertragungstechnik

Erstes Transatlantik-Telefonkabel: 1956

Technische Daten:

- Kapazität: 500 kbit/s
- 36 Fernsprechkanäle
- 51 Verstärker im Abstand von je 70 km

(Abgeschaltet: 1978)

Erstes Transatlantik-Glasfaserkabel: 1988

Technische Daten:

- Kapazität: 560 Mbit/s
- 37800 Verbindungen gleichzeitig
- Kosten: 350 Mio US\$ (noch heute in Betrieb)

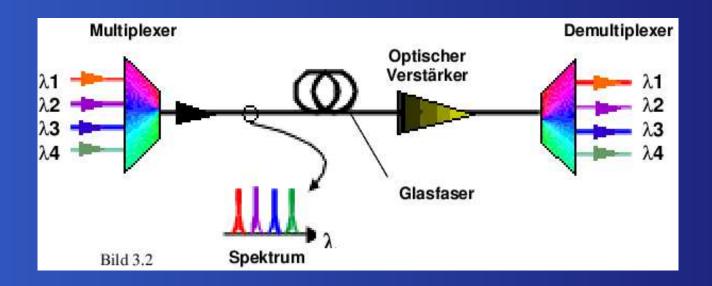
Heutiger Stand

- 10 GBit/s pro Kanal
- 160 Kanäle pro Faser
- 72 Fasern pro Kabel

Insgesamt: 115,2 Tbit/s

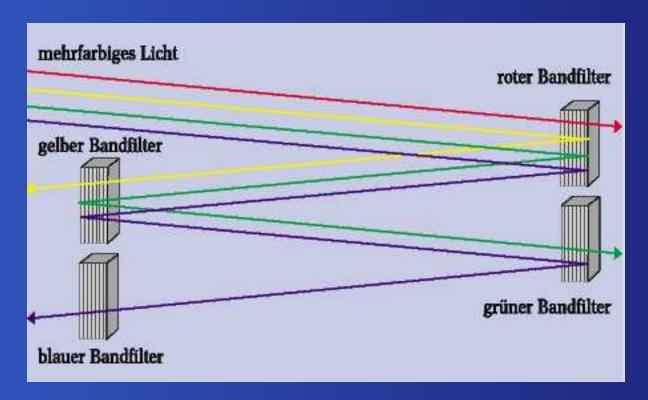
Angestrebt: 40 GBit/s

Einleitung



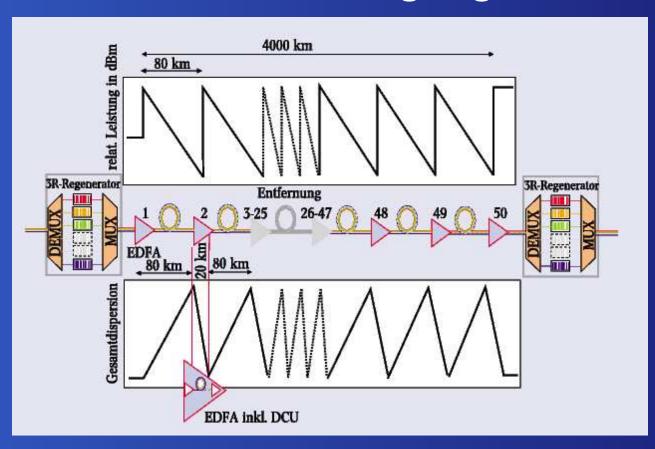
Die Datenübertragung erfolgt heute mit Single-Mode Glasfasern, wobei im Rahmen der WDM-Technik verschiedene Wellenlängen zur Datenübertragung genutzt werden können.

Mögliche Realisierung eines Multiplexers



Einleitung

Aufbau einer Übertragungsstrecke



Dispersions- Management über große Distanzen

Dispersionseffekte und -management

Dispersionseffekte und -management

Lineare Dispersionseffekte

Dispersionseffekte und -management

- Lineare Dispersionseffekte
- Nichtlineare Dispersionseffekte

Dispersionseffekte und -management

- Lineare Dispersionseffekte
- Nichtlineare Dispersionseffekte

Solitonen in der Datenübertragung

Dispersionseffekte und -management

- Lineare Dispersionseffekte
- Nichtlineare Dispersionseffekte

Solitonen in der Datenübertragung

Die nichtlineare Schrödinger- Gleichung für Glasfasern

Dispersionseffekte und -management

- Lineare Dispersionseffekte
- Nichtlineare Dispersionseffekte

Solitonen in der Datenübertragung

- Die nichtlineare Schrödinger- Gleichung für Glasfasern
- "Guiding- Centre" und Quasi-Solitonen

Chromatische Dispersion

- Chromatische Dispersion: $D=rac{1}{c}rac{dn}{d\lambda}$
- Brechungsindex: $n(\omega, k) = \frac{ck}{\omega}$

Chromatische Dispersion

- Chromatische Dispersion: $D = \frac{1}{c} \frac{dn}{d\lambda}$
- Brechungsindex: $n(\omega, k) = \frac{ck}{\omega}$

Zu unterscheiden sind folgende Effekte:

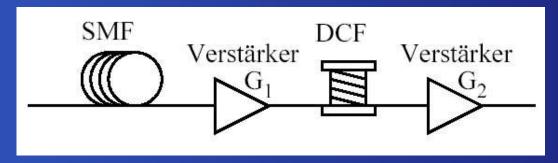
• I. Wellenleiterdispersion Ursache: Unterschiedlichen Ausbreitungsgeschwindigkeit von Wellen verschiedener Frequenz nach $\frac{\omega}{k} = \frac{c}{n(k,\omega)}$

Chromatische Dispersion

- Chromatische Dispersion: $D = \frac{1}{c} \frac{dn}{d\lambda}$
- Brechungsindex: $n(\omega, k) = \frac{ck}{\omega}$

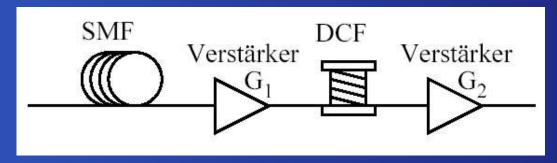
Zu unterscheiden sind folgende Effekte:

 II. Materialdispersion
 Wellenlängenabhängigkeit der Brechzahl des Fasermaterials nach obiger Beziehung

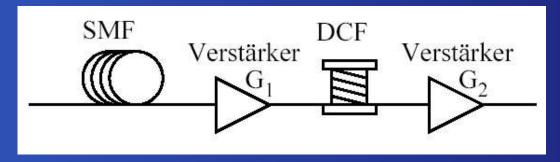


Die chromatische Dispersion kann durch die Hintereinanderschaltung von Lichtwellenleitern mit entgegengesetzter chromatischer Dispersion kompensiert werden.

DCF: Dispersionskompensierende Faser



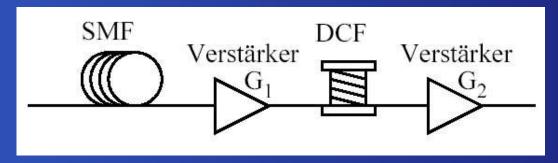
Bedingungen für vollständige Kompensation:



Bedingungen für vollständige Kompensation:

 $D_{SMF}L_{SMF} = D_{DCF}L_{DCF}$

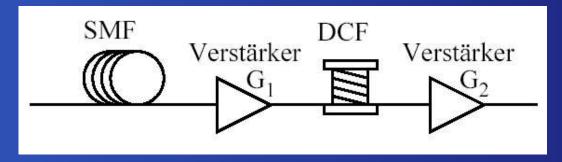
Kompensation der chromatischen Dispersion



Bedingungen für vollständige Kompensation:

$$D_{SMF}L_{SMF} = D_{DCF}L_{DCF}$$

Dispersion:
$$D = \frac{1}{c} \frac{dn}{d\lambda}$$

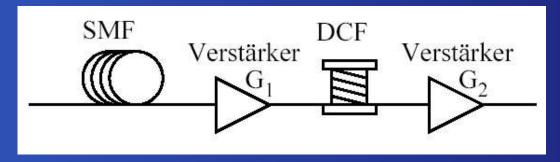


Bedingungen für vollständige Kompensation:

 $D_{SMF}L_{SMF} = D_{DCF}L_{DCF}$

Länge der Fasern

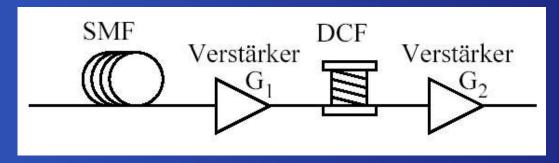
Kompensation der chromatischen Dispersion



Bedingungen für vollständige Kompensation:

- $D_{SMF}L_{SMF} = D_{DCF}L_{DCF}$
- $S_{SMF}L_{SMF}=S_{DCF}L_{DCF}$

Kompensation der chromatischen Dispersion



Bedingungen für vollständige Kompensation:

- $D_{SMF}L_{SMF} = D_{DCF}L_{DCF}$
- $S_{SMF}L_{SMF} = S_{DCF}L_{DCF}$

Dispersionssteigung: $S = \frac{dD}{d\lambda}$

Elastische Effekte

- Selbstphasenmodulation (SPM)
- Kreuzphasenmodulation (XPM)
- Vierwellenmischung (FWM)

Inelastische Effekte

- Stimulierte Ramann- Streuung (SRS)
- Stimulierte Brillouin- Streuung (SBS)

Die elastischen Effekte gehen auf den Kerr-Effekt zurück:

$$n(E) = n_0 + n_2 \cdot E^2$$

Die **elastischen Effekte** gehen auf den **Kerr-Effekt** zurück:

$$n(E) = n_0 + n_2 \cdot E^2$$

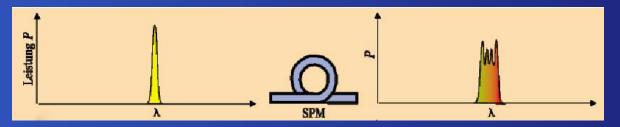
Über die elektrische Polarisation \vec{P} im Lichtwellenleiter

$$\vec{P}(\vec{r},t) = \underbrace{\epsilon_0 \chi_1 \vec{E}(\vec{r},t)}_{\text{Lineare Polarisation}} + \underbrace{\epsilon_0 \chi_3 \left| \vec{E}(\vec{r},t) \right|^2 \vec{E}(\vec{r},t)}_{\text{Lineare Polarisation}}$$

Nichtlineare Polarisation

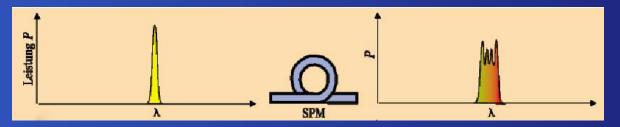
folgt als Kerr-Koeffizient:
$$n_2 = \frac{3}{4\epsilon_0 cn^2} Re(\chi_3)$$

Elastische Effekte: Selbstphasenmodulation



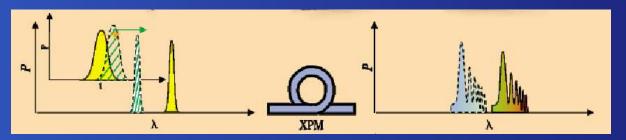
- Selbstphasenmodulation ist die Störung eines einzelnen WDM- Kanals über den Kerr-Effekt
- Im Bereich einer steigenden Pulsflanke wird die Frequenz eines Signals reduziert und im Bereich einer fallenden erhöht

Elastische Effekte: Selbstphasenmodulation



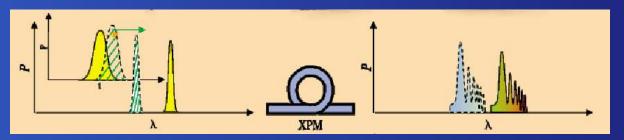
- Die Phasenmodulation eines Signals bewirkt bei normaler Dispersion eine symmetrische Verbreiterung des Spektrums
- Bei anormaler Dispersion tritt eines Kompression des Signals auf

Elastische Effekte: Kreuzphasenmodulation



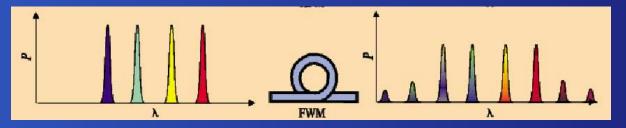
- Bei Kreuzphasenmodulation wechselwirken zwei WDM Kanäle über den Kerr-Effekt
- Aufgrund von Dispersion überholen sich Signale zweier Kanäle und es kommt zur Wechselwirkung

Elastische Effekte: Kreuzphasenmodulation



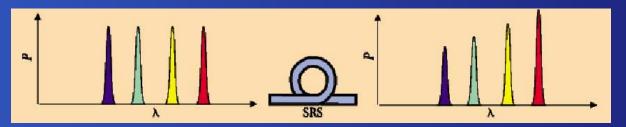
 Je ähnlicher die Gruppengeschwindigkeit der Kanäle umso größer die Wechselwirkung

Elastische Effekte: Vierwellenmischung



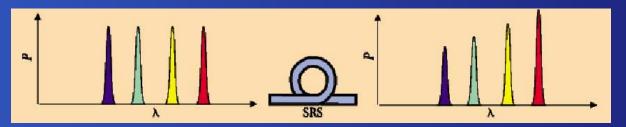
Bei N Signalfrequenzen treten $N^2(N-1)/2$ Mischprodukte unterschiedlicher Intensität und Frequenz auf

Unelastische Effekte: Raman- Streuung



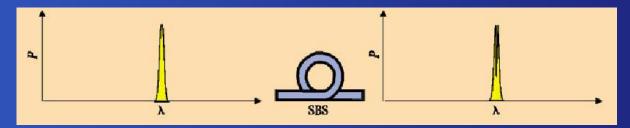
Bei Anregung eines Atoms durch ein Photon kann ein Teil der Anregungsenergie als Phonon abgegeben werden. Die restliche Energie wird als Photon mit niedrigerer Frequenz abgegeben.

Unelastische Effekte: Raman- Streuung



 Bei hohen Leistungen kommt es zur Besetzungsinversion und zu stimulierter Raman-Streuung

Unelastische Effekte: Brillouin- Streuung



- Tritt auf bei Streuung von Photonen an Phononen des verwendeten Mediums
- Das ausfallende Photon besitzt eine um die Frequenz des Phonons gegenüber dem einfallenden Photon erniedrigte Frequenz und wird in entgegengesetzte Richtung reflektiert

$$n = \frac{ck}{\omega} = n_0(\omega) + n_2|E|^2$$

NLSE

Brechungsindex in Glasfasern:

$$n = \frac{ck}{\omega} = n_0(\omega) + n_2 |E|^2$$

Kerr- Koeffizient

$$n = \frac{ck}{\omega} = n_0(\omega) + n_2|E|^2$$

$$n = \frac{ck}{\omega} = n_0(\omega) + n_2|E|^2$$

$$k - k_0 = k'(\omega_0)(\omega - \omega_0) + \frac{k''(\omega_0)}{2}(\omega - \omega_0)^2 + \frac{\partial l}{\partial |E|^2}|E|^2$$

$$n = \frac{ck}{\omega} = n_0(\omega) + n_2|E|^2$$

$$k - k_0 = k'(\omega_0)(\omega - \omega_0) + \frac{k''(\omega_0)}{2}(\omega - \omega_0)^2 + \frac{\partial l}{\partial |E|^2}|E|^2$$

Operatoren:
$$(k-k_0)E \rightarrow i\frac{\partial E}{\partial z}, (\omega-\omega_0)E \rightarrow -i\frac{\partial E}{\partial t}$$

$$n = \frac{ck}{\omega} = n_0(\omega) + n_2|E|^2$$

$$k - k_0 = k'(\omega_0)(\omega - \omega_0) + \frac{k''(\omega_0)}{2}(\omega - \omega_0)^2 + \frac{\partial l}{\partial |E|^2}|E|^2$$

Operatoren:
$$(k-k_0)E \rightarrow i\frac{\partial E}{\partial z}, (\omega-\omega_0)E \rightarrow -i\frac{\partial E}{\partial t}$$

$$\left[i\left(\frac{\partial}{\partial z} + k'\frac{\partial}{\partial t}\right) - \frac{k''}{2}\frac{\partial^2}{\partial t^2} + \frac{\partial k}{\partial |E|^2}|E|^2\right]E = 0$$

$$n = \frac{ck}{\omega} = n_0(\omega) + n_2|E|^2$$

$$k - k_0 = k'(\omega_0)(\omega - \omega_0) + \frac{k''(\omega_0)}{2}(\omega - \omega_0)^2 + \frac{\partial l}{\partial |E|^2}|E|^2$$

Operatoren:
$$(k-k_0)E \rightarrow i\frac{\partial E}{\partial z}, (\omega-\omega_0)E \rightarrow -i\frac{\partial E}{\partial t}$$

$$\left[i\left(\frac{\partial}{\partial z} + k'\frac{\partial}{\partial t}\right) - \frac{k''}{2}\frac{\partial^2}{\partial t^2} + \frac{\partial k}{\partial |E|^2}|E|^2\right]E = 0$$

Einsetzen von
$$k' \approx \frac{n_0(\omega_0)}{c}, k'' \approx \frac{2}{c} \frac{\partial n_0}{\partial \omega_0}, \frac{\partial k}{\partial |E|^2} \approx \frac{\omega_0 n_2}{c}$$

$$n = \frac{ck}{\omega} = n_0(\omega) + n_2|E|^2$$

$$k - k_0 = k'(\omega_0)(\omega - \omega_0) + \frac{k''(\omega_0)}{2}(\omega - \omega_0)^2 + \frac{\partial l}{\partial |E|^2}|E|^2$$

Operatoren:
$$(k-k_0)E \rightarrow i\frac{\partial E}{\partial z}, (\omega-\omega_0)E \rightarrow -i\frac{\partial E}{\partial t}$$

$$\left[i\left(\frac{\partial}{\partial z} + k'\frac{\partial}{\partial t}\right) - \frac{k''}{2}\frac{\partial^2}{\partial t^2} + \frac{\partial k}{\partial |E|^2}|E|^2\right]E = 0$$

Einsetzen von
$$k' \approx \frac{n_0(\omega_0)}{c}, k'' \approx \frac{2}{c} \frac{\partial n_0}{\partial \omega_0}, \frac{\partial k}{\partial |E|^2} \approx \frac{\omega_0 n_2}{c}$$

$$i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2E = 0$$
 mit $\tau = t - k'z$

NLSE:
$$i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2E = 0$$

NLSE:
$$i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2E = 0$$

Es gilt:
$$k'' = -\frac{\lambda^2}{2\pi c}D$$

NLSE:
$$i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2E = 0$$

Es gilt:
$$k'' = -\frac{\lambda^2}{2\pi c}D$$

Dispersionsdistanz:
$$z_0 = \frac{t_0}{|k''|}$$

NLSE:
$$i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2E = 0$$

Es gilt:
$$k'' = -\frac{\lambda^2}{2\pi c}D$$

Dispersions distanz:
$$z_0 = \frac{t_0}{|k'|}$$

Pulsdauer: t_0

NLSE

NLSE:
$$i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2E = 0$$

Es gilt:
$$k'' = -\frac{\lambda^2}{2\pi c}D$$

Dispersionsdistanz:
$$z_0 = \frac{t_0}{|k''|}$$

Pulsdauer: t_0

Mit
$$T=\frac{\tau}{t_0}$$
, $Z=\frac{z}{z_0}$ und $q=\sqrt{\frac{\omega_0 n_2 z_0}{c}}E$ folgt:

NLSE:
$$i\frac{\partial q}{\partial Z} \pm \frac{1}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = 0$$

+: D > 0 (Anormale Dispersion), -: D < 0 (Normale Dispersion)

NLSE

Lösungen der NLSE

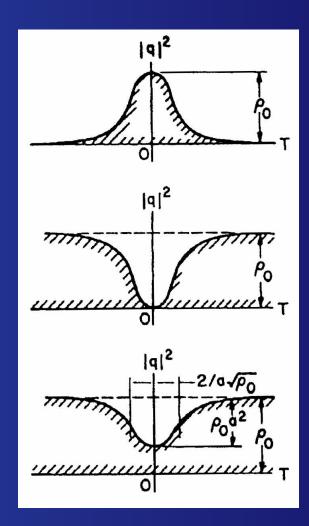
- D > 0: Helles Soliton $\eta sech[\eta(T+\kappa Z-T_0)]e^{-i(\kappa T+\frac{(\kappa^2-\eta^2)Z}{2}+\sigma}$
- D < 0: Dunkles Soliton $\eta sech[\eta(T+\kappa Z-T_0)]e^{-i(\kappa T+\frac{\kappa^2 Z}{2}-\sigma_0-\sigma)}$

Beide: η : Amplitude, κ : Frequenzverschie-

bung, σ :Phase

Dunkles Soliton: a: Tiefe des Solitons,

$$\sigma_0 = \eta T \sqrt{1 - a^2} + tan^{-1} \left[\frac{atanh(\eta aT)}{\sqrt{1 - a^2}} \right] - \frac{\eta^2 (3 - a^2)Z}{2}$$



$$i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = -i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$$

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung

$$i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = -i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$$

d(Z): ortsabhängiger Dispersionsterm

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung

$$i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = -i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$$

Γ: Dämpfungsterm

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung

$$i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = -i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$$

Z_a: Verstärkerabstand

$$i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = -i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$$

$$\alpha$$
: Verstärkung mit $\alpha = e^{\Gamma Z_a} - 1$

$$i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = -i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$$

Mit
$$a(Z)=\sqrt{\frac{2\Gamma Z_a}{1-e^{-2\Gamma Z_a}}}e^{-\Gamma(Z-nZ_a)}$$
 und $u=\frac{q}{a}$ folgt:
$$\frac{\partial u}{\partial Z}=i\frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2}+ia^2(Z)|u|^2u$$

$$i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = -i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$$

Mit
$$a(Z)=\sqrt{\frac{2\Gamma Z_a}{1-e^{-2\Gamma Z_a}}}e^{-\Gamma(Z-nZ_a)}$$
 und $u=\frac{q}{a}$ folgt:
$$\frac{\partial u}{\partial Z}=i\frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2}+ia^2(Z)|u|^2u$$

$$u = e^{(\phi \cdot \nabla)\nu} \Rightarrow \frac{\partial \nu}{\partial Z} = \frac{i}{2} \frac{\partial^2 \nu}{\partial T^2} + i|\nu|^2 \nu + O(Z_a^2)$$

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung

$$i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = -i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$$

Lie- Transformation

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung

$$i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = -i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$$

Mit
$$a(Z) = \sqrt{\frac{2\Gamma Z_a}{1 - e^{-2\Gamma Z_a}}} e^{-\Gamma(Z - nZ_a)}$$
 und $u = \frac{q}{a}$ folgt:
$$\frac{\partial u}{\partial Z} = i \frac{d(Z)}{2} \frac{\partial^2 u}{\partial T^2} + i a^2(Z) |u|^2 u$$

$$u = e^{(\phi \cdot \nabla)\nu} \Rightarrow \frac{\partial \nu}{\partial Z} = \frac{i}{2} \frac{\partial^2 \nu}{\partial T^2} + i |\nu|^2 \nu + O(Z_a^2)$$

Kleiner Parameter mit $Z_a = z_a/z_0$

Ausgangspunkt:
$$i\frac{\partial u}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2} + a^2(Z)|u|^2u = 0$$

Ausgangspunkt:
$$i\frac{\partial u}{\partial Z}+\frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2}+a^2(Z)|u|^2u=0$$

Mit $Z'=\int_0^Z a^2(Z)dZ$ und $d_e(Z')=\frac{d(Z)}{a^2(Z)}$ folgt:

$$i\frac{\partial u}{\partial Z'} + \frac{d_e(Z')}{2}\frac{\partial^2 u}{\partial T^2} + |u|^2 u = 0$$

Ausgangspunkt:
$$i\frac{\partial u}{\partial Z}+\frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2}+a^2(Z)|u|^2u=0$$

Mit
$$Z' = \int_0^Z a^2(Z) dZ$$
 und $d_e(Z') = \frac{d(Z)}{a^2(Z)}$ folgt:

$$i\frac{\partial u}{\partial Z'} + \frac{d_e(Z')}{2} \frac{\partial^2 u}{\partial T^2} + |u|^2 u = 0$$

Über
$$u = \sqrt{p(Z)}\nu(p(Z')T,Z')e^{i\frac{c(Z')}{2}T^2}$$
 folgt weiter:

$$i\frac{\partial \nu}{\partial Z'} + \frac{d_e p^2}{2} \frac{\partial^2 \nu}{\partial \tau^2} + p|\nu|^2 \nu = \frac{K_1 \tau^2 p}{2} \nu$$

mit:
$$\tau = pT$$
 $\frac{dp}{dZ} = -Cpd_e$ $K_1 = \frac{dC/dZ + C^2d_e}{p^3}$

Ausgangspunkt:
$$i\frac{\partial u}{\partial Z}+\frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2}+a^2(Z)|u|^2u=0$$

Mit
$$Z' = \int_0^Z a^2(Z) dZ$$
 und $d_e(Z') = \frac{d(Z)}{a^2(Z)}$ folgt:

$$i\frac{\partial u}{\partial Z'} + \frac{d_e(Z')}{2} \frac{\partial^2 u}{\partial T^2} + |u|^2 u = 0$$

Über $u = \sqrt{p(Z)}\nu(p(Z')T,Z')e^{i\frac{c(Z')}{2}T^2}$ folgt weiter:

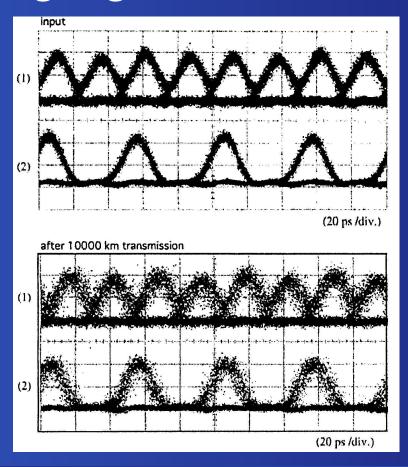
$$i\frac{\partial \nu}{\partial Z'} + \frac{d_e p^2}{2} \frac{\partial^2 \nu}{\partial \tau^2} + p|\nu|^2 \nu = \frac{K_1 \tau^2 p}{2} \nu$$

mit:
$$\tau = pT$$
 $\frac{dp}{dZ} = -Cpd_e$ $K_1 = \frac{dC/dZ + C^2d_e}{p^3}$

Bei einem **Dispersionsprofil** mit K_1 =const, $d_e p = 1$ folgt:

$$i\frac{\partial\nu}{\partial Z''} + \frac{1}{2}\frac{\partial^2\nu}{\partial\tau^2} + (|\nu|^2 - \frac{K_1\tau^2}{2})\nu = 0$$

DMS- Übertragung mit 40 GB/s über 10 000 km



Solitonen

Schwierigkeiten bei der Datenübertragung mit Solitonen

- Wechselwirkung der Solitonen
- Nutzung mehrerer Kanäle
- Propagation der Solitonen in Verstärkern
- Störung der Solitonen durch Rauschen

Optische Verstärker in Glasfasernetzen

Faserverstärker

Faserverstärker

Erbium dotierte Faserverstärker

Faserverstärker

- Erbium dotierte Faserverstärker
- Verstärkung, Bandbreite und Rauschen

Faserverstärker

- Erbium dotierte Faserverstärker
- Verstärkung, Bandbreite und Rauschen
- Verstärkersolitonen

Faserverstärker

- Erbium dotierte Faserverstärker
- Verstärkung, Bandbreite und Rauschen
- Verstärkersolitonen

Zukünftige optische Verstärker

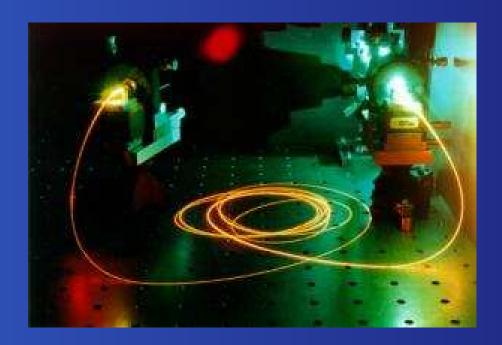
Faserverstärker

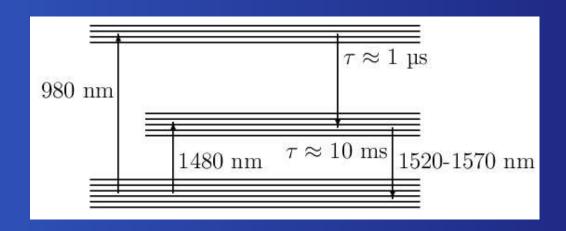
- Erbium dotierte Faserverstärker
- Verstärkung, Bandbreite und Rauschen
- Verstärkersolitonen

Zukünftige optische Verstärker

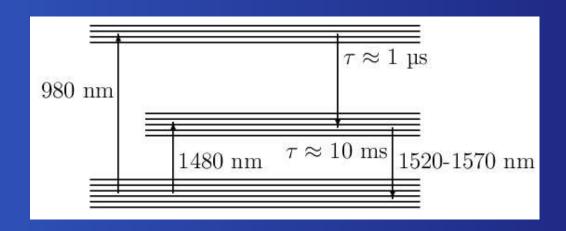
Halbleiterverstärker (SOA)

Erbium dotierte Faserverstärker (EDFA)

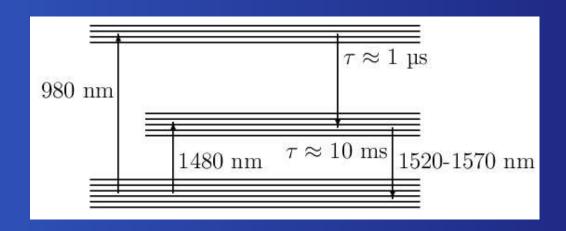




- Ein Pumplaser mit $\lambda = 980nm$ hebt Elektronen aus dem Grundzustand in ein höheres Niveau.
- Die Elektronen fallen nach etwa $1\mu s$ auf ein Zwischenniveau.



- Zwischen dem Grundzustand und dem Zwischenzustand kommt es zur Besetzungsinversion.
- Ein eingespeistes Signal bewirkt stimulierte Emission und wird so verstärkt.



• Der Zwischenzustand wird häufig auch über einen Pumplaser mit $\lambda = 1480nm$ direkt besetzt.

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

Verstärkungskoeffizient

$$g(\omega) = \frac{g_0}{1 + (\omega - \omega_a)^2 T_2^2 + P/P_s}$$

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

Verstärkungskoeffizient

$$g(\omega) = \frac{g_0}{1 + (\omega - \omega_a)^2 T_2^2 + P/P_s}$$

Verstärkungsmaximum

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

Verstärkungskoeffizient

$$g(\omega) = \frac{q_0}{1 + (\omega - \omega_a)^2 T_2^2 + P/P_s}$$

Übergangsfrequenz

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

Verstärkungskoeffizient

$$g(\omega) = \frac{g_s}{1 + (\omega - \omega_a)^2 T_2^2 + P/P_s}$$

Dipolrelaxationszeit

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

Verstärkungskoeffizient

$$g(\omega) = \frac{g_0}{1 + (\omega - \omega_a)^2 T_2^2 + P/P_s}$$

Eingangsleistung

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

Verstärkungskoeffizient

$$g(\omega) = \frac{g_0}{1 + (\omega - \omega_a)^2 T_2^2 + F/P_s}$$

Sättigungsleistung

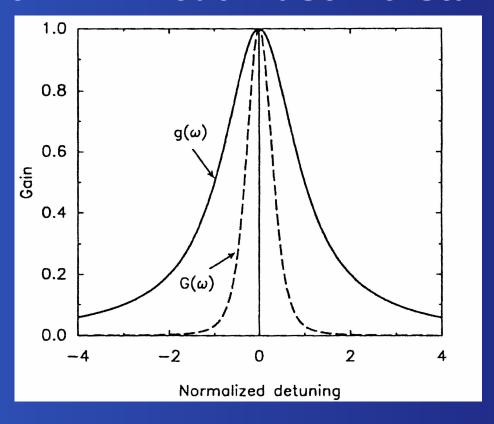
Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

Verstärkungskoeffizient

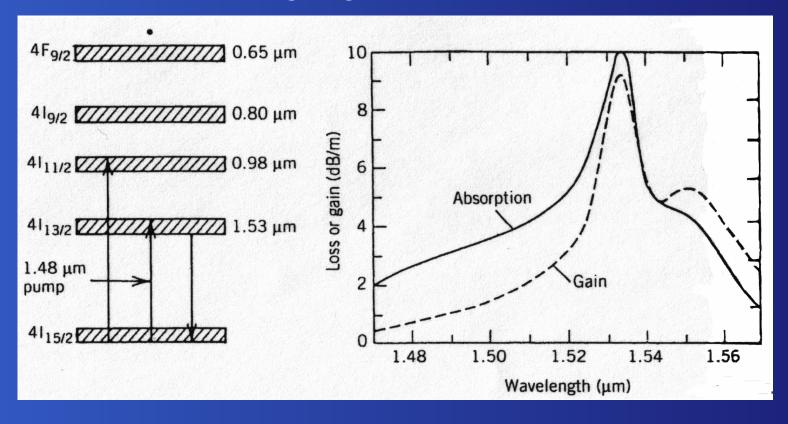
$$g(\omega) = \frac{g_0}{1 + (\omega - \omega_a)^2 T_2^2 + P/P_s}$$

• Verstärkung $G = e^{\int_0^L g(z)dz}$

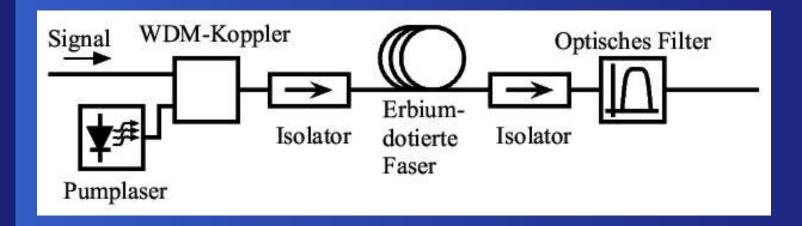
Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker



Tatsächliche Verstärkung und Bandbreite bei einem EDFA



Rauschen



Neben der stimulierten Emission kommt es zu spontaner Emission (ASE) von Photonen. Als Folge tritt ein gaußförmiges weißes Rauschen auf.

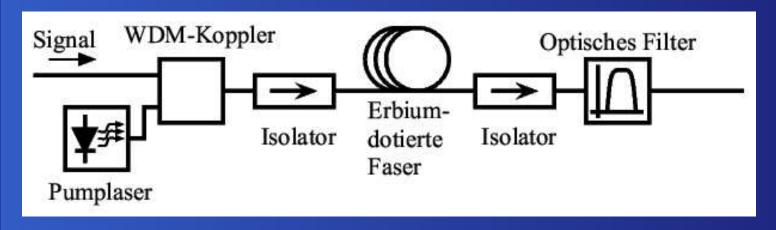
Rauschen



Rauschzahl

$$F = \frac{OSNR|_{Eingang}}{OSNR|_{Ausgang}} = \frac{1}{G}(1 + 2n_{sp}(G - 1))$$

Rauschen

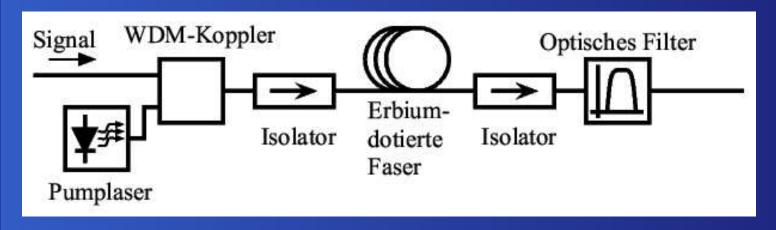


Rauschzahl

$$F = \frac{OSNR|_{Eingang}}{OSNR|_{Ausgang}} = \frac{1}{G}(1 + 2n_{sp}(G - 1))$$

OSNR: Optical Signal to Noise Ratio

Rauschen

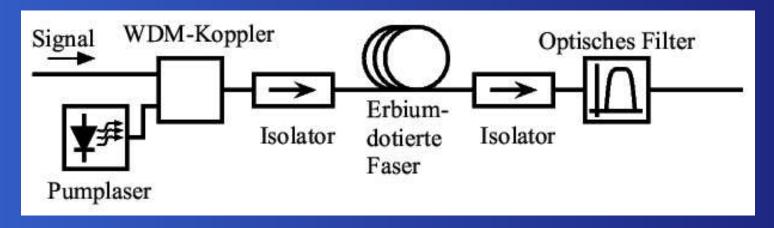


Rauschzahl

$$F = \frac{OSNR|_{Eingang}}{OSNR|_{Ausgang}} = \frac{1}{G}(1 + 2n_{sp}(G - 1))$$

Inversionskoeffizient $(n_{sp} \ge 1)$

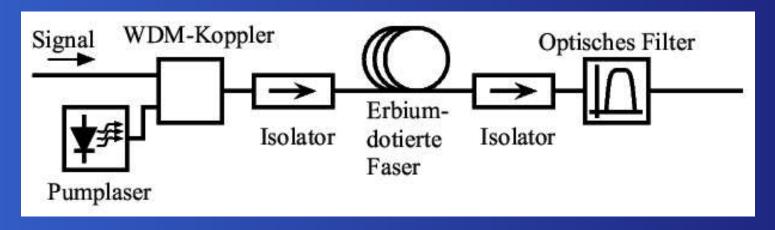
Rauschen



Rauschzahl

$$F = \frac{OSNR|_{Eingang}}{OSNR|_{Ausgang}} = \frac{1}{G}(1 + 2n_{sp}(G - 1))$$
$$G \gg 1 \Rightarrow F \approx 2n_{sp} \geq 3dB$$

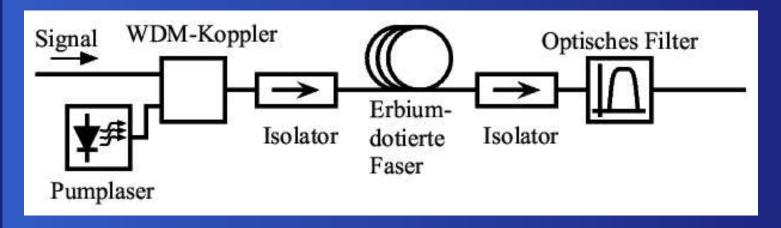
Rauschen



Ausgangssignal

$$A_{aus}(t) = \sqrt{G}A_{ein}(t) + A_{ASE}(t)$$

Rauschen

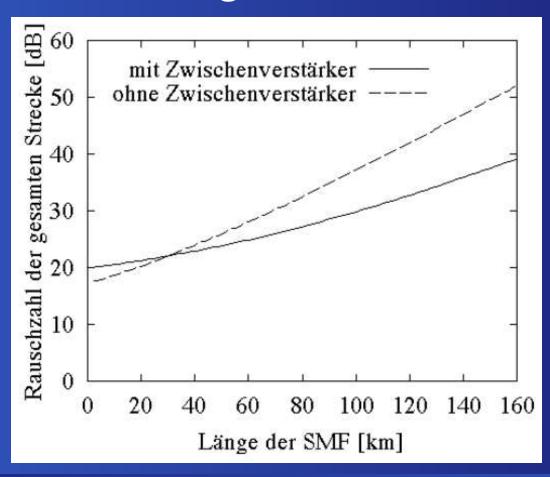


Ausgangssignal

$$A_{aus}(t) = \sqrt{G}A_{ein}(t) + A_{ASE}(t)$$

Rauschterm

Entwicklung der Rauschzahl



Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die Ginzburg- Landau Gleichung beschrieben:

$$i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s+id)\frac{\partial^2 u}{\partial \tau^2} + (1+i\frac{\mu_2}{2})|u|^2 u = \frac{i}{2}\mu u$$

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die Ginzburg- Landau Gleichung beschrieben:

$$i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s + id)\frac{\partial^2 u}{\partial \tau^2} + (1 + i\frac{\mu_2}{2})|u|^2 u = \frac{i}{2}\mu u$$

+1: Normale GVD, -1: Anormale GVD

EDFA: Solitonen

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die Ginzburg- Landau Gleichung beschrieben:

$$i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s + id)\frac{\partial^2 u}{\partial \tau^2} + (1 + i\frac{\mu_2}{2})|u|^2 u = \frac{i}{2}\mu u$$

EDFA- Parameter

(typisch:
$$d \sim 1$$
, $\mu \sim 1$, $\mu_2 \sim 10^{-4}$)

$$d = \mu = \mu_2 = 0 \Rightarrow \mathsf{NLSE}$$

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die Ginzburg- Landau Gleichung beschrieben:

$$i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s+id)\frac{\partial^2 u}{\partial \tau^2} + (1+i\frac{\mu_2}{2})|u|^2 u = \frac{i}{2}\mu u$$

Die Gleichung erlaubt die Propagation von

solitären Wellen:
$$u(\xi,\tau)=N_s[sech(p\tau)]^{1+iq}e^{iK_s\xi}$$

EDFA: Solitonen

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die Ginzburg- Landau Gleichung beschrieben:

$$i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s+id)\frac{\partial^2 u}{\partial \tau^2} + (1+i\frac{\mu_2}{2})|u|^2 u = \frac{i}{2}\mu u$$

Die Gleichung erlaubt die Propagation von

solitären Wellen:
$$u(\xi,\tau)=N_s[sech(p\tau)]^{1+iq}e^{iK_s\xi}$$

Zu bestimmende Lösungsparameter:

$$N_s(s, d, \mu, \mu_2), p(s, d, \mu, \mu_2),$$
 $q(s, d, \mu, \mu_2), K_s(s, d, \mu, \mu_2)$

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die Ginzburg- Landau Gleichung beschrieben:

$$i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s+id)\frac{\partial^2 u}{\partial \tau^2} + (1+i\frac{\mu_2}{2})|u|^2 u = \frac{i}{2}\mu u$$

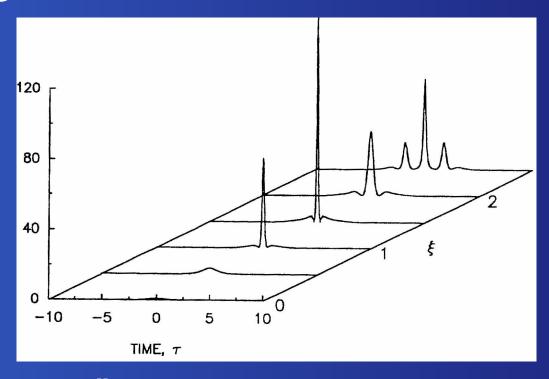
Die Gleichung erlaubt die Propagation von

solitären Wellen:
$$u(\xi,\tau)=N_s[sech(p\tau)]^{1+iq}e^{iK_s\xi}$$

Eine Solitonlösung exisiert nur für

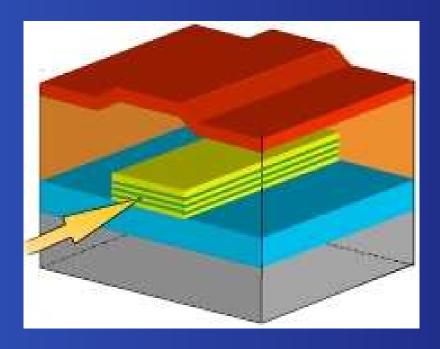
$$d = \mu = \mu_2 = 0$$

Propagation eines Solitons in einem EDFA

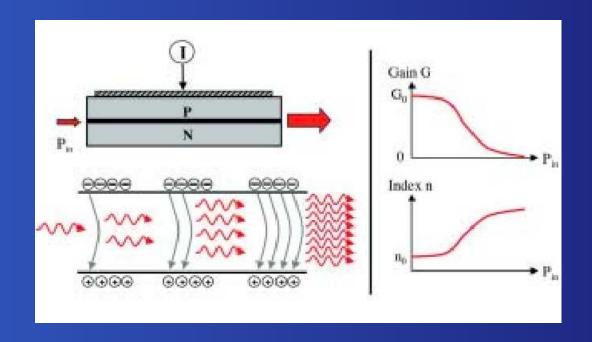


Es findet ein Übergang zur solitären Welle statt.

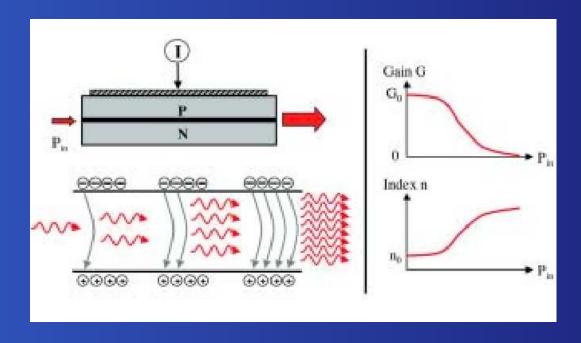
Semiconductor Optical Amplifier



SOA: Verstärkung



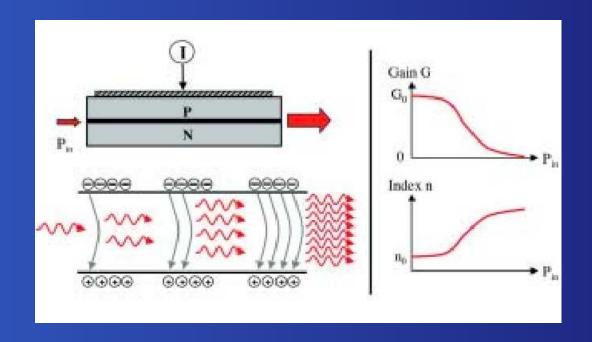
Die **Verstärkung** in einem Halbleiter erfolgt durch stimulierte Emission und beträgt: $G_s = e^{g \cdot L}$



Die **Verstärkung** in einem Halbleiter erfolgt durch stimulierte Emission und beträgt: $G_s = e^{g \cdot L}$

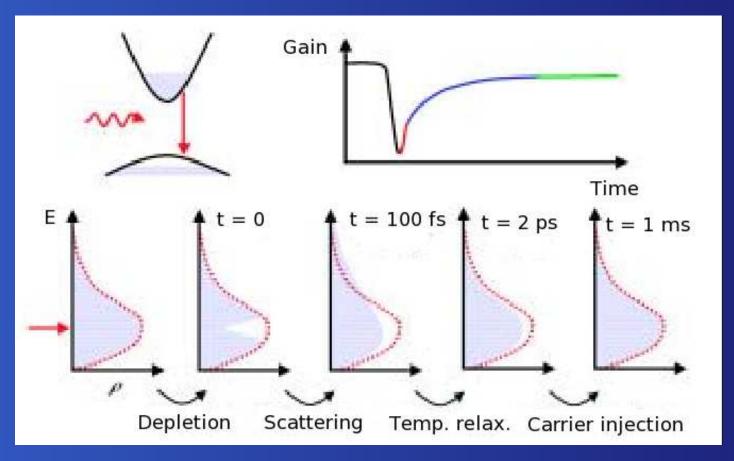
Verstärkungskoefizient

SOA: Verstärkung



Die **Verstärkung** in einem Halbleiter erfolgt durch stimulierte Emission und beträgt: $G_s = e^{g \cdot L}$

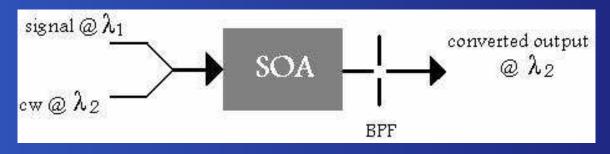
Ladungsträgerdynamik in einem SOA



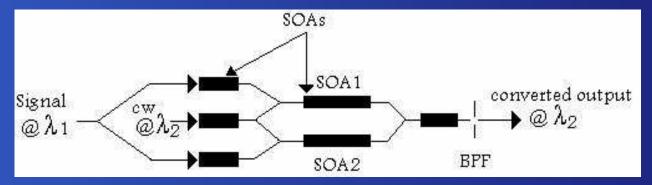
Westfälische Wilhelms-Universität Münster

SOA: Anwendungen

Cross- Gain Modulation bei bis zu 100 GB/s



Cross- Phase Modulation



Vorteile

- Gute Verstärkung
- Kompaktes und günstiges Bauelement
- Eröffnet viele Möglichkeiten der optischen Signalverarbeitung

Nachteile

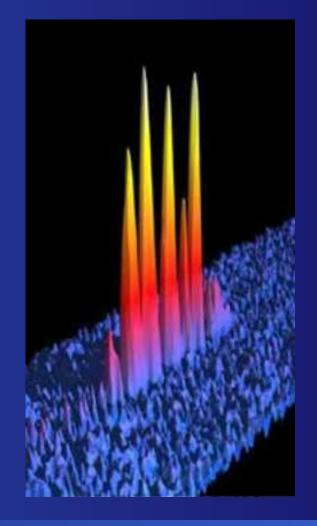
 Variierende Verstärkung und Variation der Bit-Raten im GB/s Bereich aufgrund geringer Erholungszeit von einigen hundert ps

Zusammenfassung

Zusammenfassung

Dispersionsmanagement

- Die chromatische Dispersion kann über DCF vollständig kompensiert werden.
- Nichtlineare Effekte führen hingegen zu Einschränkungen beim Entwurf einer Übertragungsstrecke.
- Solitonen weisen als Alternative aufgrund ihrer Interaktionen gravierende Nachteile auf.



Optische Verstärker

- EDFA's bieten gute Verstärkung bei geringem Rauschen. Die Propagation solitärer Wellen in einem EDFA ist möglich.
- Halbleiterverstärker eröffnen viele Möglichkeiten der optischen Signalverarbeitung und stellen eine mögliche Alternative zum EDFA dar.

